Skip to main content

Research Repository

Advanced Search

Professor JOEL SEGAL's Outputs (2)

Improving umbilical cord blood processing to increase total nucleated cell count yield and reduce cord input wastage by managing the consequences of input variation (2014)
Journal Article
Win Naing, M., Gibson, D. A., Hourd, P., Gomez, S. G., Horton, R. B., Segal, J., & Williams, D. J. (2015). Improving umbilical cord blood processing to increase total nucleated cell count yield and reduce cord input wastage by managing the consequences of input variation. Cytotherapy, 17(1), 58-67. https://doi.org/10.1016/j.jcyt.2014.09.003

Background aims: With the rising use of umbilical cord blood (UCB) as an alternative source of hematopoietic stem cells, storage inventories of UCB have grown, giving rise to genetically diverse inventories globally. In the absence of reliable marker... Read More about Improving umbilical cord blood processing to increase total nucleated cell count yield and reduce cord input wastage by managing the consequences of input variation.

A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing (2014)
Journal Article
Rogers, C. M., Morris, G. E., Gould, T. W., Bail, R., Toumpaniari, S., Harrington, H., Dixon, J. E., Shakesheff, K. M., Segal, J., & Rose, F. R. A. J. (2014). A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing. Biofabrication, 6(3), 035003. https://doi.org/10.1088/1758-5082/6/3/035003

Electrospinning is a common technique used to fabricate fibrous scaffolds for tissue engineering applications. There is now growing interest in assessing the ability of collector plate design to influence the patterning of the fibres during the elect... Read More about A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing.