Skip to main content

Research Repository

Advanced Search

KLAUS WINZER's Outputs (5)

Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid (2022)
Journal Article
Salinas, A., McGregor, C., Irorere, V., Arenas-López, C., Bommareddy, R. R., Winzer, K., Minton, N. P., & Kovács, K. (2022). Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid. Metabolic Engineering, 74, 178-190. https://doi.org/10.1016/j.ymben.2022.10.014

3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensiv... Read More about Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid.

Metabolic modeling-based drug repurposing in Glioblastoma (2022)
Journal Article
Tomi-Andrino, C., Pandele, A., Winzer, K., King, J., Rahman, R., & Kim, D.-H. (2022). Metabolic modeling-based drug repurposing in Glioblastoma. Scientific Reports, 12, Article 11189. https://doi.org/10.1038/s41598-022-14721-w

The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a... Read More about Metabolic modeling-based drug repurposing in Glioblastoma.

A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications (2022)
Journal Article
Pearcy, N., Garavaglia, M., Millat, T., Gilbert, J. P., Song, Y., Hartman, H., Woods, C., Tomi-Andrino, C., Bommareddy, R. R., Cho, B. K., Fell, D. A., Poolman, M., King, J. R., Winzer, K., Twycross, J., & Minton, N. P. (2022). A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 18(5), Article e1010106. https://doi.org/10.1371/journal.pcbi.1010106

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly prom... Read More about A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications.

Required Gene Set for Autotrophic Growth of Clostridium autoethanogenum (2022)
Journal Article
Woods, C., Humphreys, C. M., Tomi-Andrino, C., Henstra, A. M., Köpke, M., Simpson, S. D., Winzer, K., & Minton, N. P. (2022). Required Gene Set for Autotrophic Growth of Clostridium autoethanogenum. Applied and Environmental Microbiology, 88(7), https://doi.org/10.1128/aem.02479-21

The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can... Read More about Required Gene Set for Autotrophic Growth of Clostridium autoethanogenum.

Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum (2022)
Journal Article
Piatek, P., Humphreys, C., Raut, M., Wright, P. C., Simpson, S., Köpke, M., Minton, N. P., & Winzer, K. (2022). Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Scientific Reports, 12(1), Article 411. https://doi.org/10.1038/s41598-021-03999-x

Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological... Read More about Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum.