Skip to main content

Research Repository

Advanced Search

Professor Rob Layfield's Outputs (33)

Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment (2024)
Journal Article
Milborne, B., Arjuna, A., Islam, T., Arafat, A., Layfield, R., Thompson, A., & Ahmed, I. (in press). Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment. Journal of the American Chemical Society,

This study presents the development and characterisation of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidisa-tion, follow... Read More about Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment.

A convenient model of serum-induced reactivity of human astrocytes to investigate astrocyte-derived extracellular vesicles (2024)
Journal Article
White, K. E., Bailey, H. L., Shaw, B. S., Geiszler, P. C., Mesquita-Ribeiro, R., Scott, D., Layfield, R., & Serres, S. (2024). A convenient model of serum-induced reactivity of human astrocytes to investigate astrocyte-derived extracellular vesicles. Frontiers in Cellular Neuroscience, 18, Article 1414142. https://doi.org/10.3389/fncel.2024.1414142

Extracellular vesicles (EVs) are secreted by all cells in the CNS, including neurons and astrocytes. EVs are lipid membrane enclosed particles loaded with various bioactive cargoes reflecting the dynamic activities of cells of origin. In contrast to... Read More about A convenient model of serum-induced reactivity of human astrocytes to investigate astrocyte-derived extracellular vesicles.

Antibody-based sex determination of human skeletal remains (2023)
Journal Article
Shaw, B., Foggin, S., Hamilton-Stanley, P., Barlow, A., Pickard, C., Fibiger, L., Oldham, N., Tighe, P., Kootker, L. M., Schrader, S., & Layfield, R. (2023). Antibody-based sex determination of human skeletal remains. iScience, 26(11), Article 108191. https://doi.org/10.1016/j.isci.2023.108191

Assignment of biological sex to skeletal remains is critical in the accurate reconstruction of the past. Analysis of sex-chromosome encoded AMELX and AMELY peptides from the enamel protein amelogenin underpins a minimally destructive mass spectrometr... Read More about Antibody-based sex determination of human skeletal remains.

Osteological, multi-isotope and proteomic analysis of poorly-preserved human remains from a Dutch East India Company burial ground in South Africa (2023)
Journal Article
Olszewski, J., Hall, R. A., Kootker, L. M., Oldham, N. J., Layfield, R., Shaw, B., Derksen, L., Manders, M., Hart, T., & Schrader, S. A. (2023). Osteological, multi-isotope and proteomic analysis of poorly-preserved human remains from a Dutch East India Company burial ground in South Africa. Scientific Reports, 13, Article 14666. https://doi.org/10.1038/s41598-023-41503-9

Skeletal remains discovered in Simon’s Town, South Africa, were hypothesised as being associated with a former Dutch East India Company (VOC) hospital. We report a novel combined osteological and biochemical approach to these poorly-preserved remains... Read More about Osteological, multi-isotope and proteomic analysis of poorly-preserved human remains from a Dutch East India Company burial ground in South Africa.

Preservation of whole antibodies within ancient teeth (2023)
Journal Article
Shaw, B., McDonnell, T., Radley, E., Thomas, B., Smith, L., Davenport, C. A. L., Gonzalez, S., Rahman, A., & Layfield, R. (2023). Preservation of whole antibodies within ancient teeth. iScience, 26(9), Article 107575. https://doi.org/10.1016/j.isci.2023.107575

Archaeological remains can preserve some proteins into deep time, offering remarkable opportunities for probing past events in human history. Recovering functional proteins from skeletal tissues could uncover a molecular memory related to the life-hi... Read More about Preservation of whole antibodies within ancient teeth.

Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation (2023)
Journal Article
Griffiths, R. C., Smith, F. R., Li, D., Wyatt, J., Rogers, D. M., Long, J. E., Cusin, L. M. L., Tighe, P. J., Layfield, R., Hirst, J. D., Muller, M. M., & Mitchell, N. (2023). Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation. Chemistry - A European Journal, 29(16), Article e202202503. https://doi.org/10.1002/chem.202202503

The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, t... Read More about Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation.

Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1 (2022)
Journal Article
Ducker, C., Ratnam, M., Shaw, P. E., & Layfield, R. (2023). Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1. Protein Expression and Purification, 203, Article 106216. https://doi.org/10.1016/j.pep.2022.106216

Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcr... Read More about Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1.

Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation (2022)
Journal Article
Milborne, B., Murrell, L., Cardillo-Zallo, I., Titman, J., Briggs, L., Scotchford, C., Thompson, A., Layfield, R., & Ahmed, I. (2022). Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation. Bioengineering, 9(11), Article 611. https://doi.org/10.3390/bioengineering9110611

Phosphate-based glasses (PBGs) are promising materials for bone repair and regeneration as they can be formulated to be compositionally similar to the inorganic components of bone. Alterations to the PBG formulation can be used to tailor their degrad... Read More about Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation.

An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins (2021)
Journal Article
Brennan, A., Layfield, R., Long, J., Williams, H. E., Oldham, N. J., Scott, D., & Searle, M. S. (2022). An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins. Journal of Biological Chemistry, 298(2), Article 101514. https://doi.org/10.1016/j.jbc.2021.101514

Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotroph... Read More about An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins.

Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation (2021)
Journal Article
Griffiths, R. C., Smith, F. R., Long, J. E., Scott, D., Williams, H. E., Oldham, N. J., Layfield, R., & Mitchell, N. J. (2022). Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation. Angewandte Chemie International Edition, 61(2), Article e202110223. https://doi.org/10.1002/anie.202110223

Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to unders... Read More about Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation.

Site‐Selective Installation of Nϵ ‐Modified Sidechains into Peptide and Protein Scaffolds via Visible‐Light‐Mediated Desulfurative C–C Bond Formation (2021)
Journal Article
Griffiths, R. C., Smith, F. R., Long, J. E., Scott, D., Williams, H. E. L., Oldham, N. J., Layfield, R., & Mitchell, N. J. (2022). Site‐Selective Installation of Nϵ ‐Modified Sidechains into Peptide and Protein Scaffolds via Visible‐Light‐Mediated Desulfurative C–C Bond Formation. Angewandte Chemie, 134(2), Article e202110223. https://doi.org/10.1002/ange.202110223

Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to unders... Read More about Site‐Selective Installation of Nϵ ‐Modified Sidechains into Peptide and Protein Scaffolds via Visible‐Light‐Mediated Desulfurative C–C Bond Formation.

Modification of small ubiquitin-related modifier 2 (SUMO2) by phosphoubiquitin in HEK293T cells (2021)
Journal Article
Dongdem, J. T., Dawson, S. P., & Layfield, R. (2021). Modification of small ubiquitin-related modifier 2 (SUMO2) by phosphoubiquitin in HEK293T cells. Proteomics, 21(15), Article 2000234. https://doi.org/10.1002/pmic.202000234

Additional complexity in the post-translational modification of proteins by ubiquitin is achieved by ubiquitin phosphorylation, for example within PINK1-parkin mediated mitophagy. We performed a preliminary proteomic analysis to identify proteins dif... Read More about Modification of small ubiquitin-related modifier 2 (SUMO2) by phosphoubiquitin in HEK293T cells.

p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death (2021)
Journal Article
Foster, A. D., Flynn, L. L., Cluning, C., Cheng, F., Davidson, J. M., Lee, A., Polain, N., Mejzini, R., Farrawell, N., Yerbury, J. J., Layfield, R., Akkari, P. A., & Rea, S. L. (2021). p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death. Scientific Reports, 11(1), Article 11474. https://doi.org/10.1038/s41598-021-90822-2

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of... Read More about p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death.

Site‐Selective Modification of Peptides and Proteins via Interception of Free‐Radical‐Mediated Dechalcogenation (2020)
Journal Article
Griffiths, R. C., Smith, F. R., Long, J. E., Williams, H. E. L., Layfield, R., & Mitchell, N. J. (2020). Site‐Selective Modification of Peptides and Proteins via Interception of Free‐Radical‐Mediated Dechalcogenation. Angewandte Chemie, 132(52), 23867-23875. https://doi.org/10.1002/ange.202006260

The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to... Read More about Site‐Selective Modification of Peptides and Proteins via Interception of Free‐Radical‐Mediated Dechalcogenation.

Site-Selective Modification of Peptides and Proteins via Interception of Free-Radical-Mediated Dechalcogenation (2020)
Journal Article
Griffiths, R. C., Smith, F. R., Long, J. E., Williams, H. E. L., Layfield, R., & Mitchell, N. J. (2020). Site-Selective Modification of Peptides and Proteins via Interception of Free-Radical-Mediated Dechalcogenation. Angewandte Chemie International Edition, 59(52), 23659-23667. https://doi.org/10.1002/anie.202006260

© 2020 The Authors. Published by Wiley-VCH GmbH The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilita... Read More about Site-Selective Modification of Peptides and Proteins via Interception of Free-Radical-Mediated Dechalcogenation.

The Use of Biomaterials in Internal Radiation Therapy (2020)
Journal Article
Milborne, B., Arafat, A., Layfield, R., Thompson, A., & Ahmed, I. (2020). The Use of Biomaterials in Internal Radiation Therapy. Recent Progress in Materials, 2(2), Article 34. https://doi.org/10.21926/rpm.2002012

Radiotherapy has become one of the most prominent and effective modalities for cancer treatment and care. Ionising radiation, delivered either from external or internal sources, can be targeted to cancerous cells causing damage to DNA that can induce... Read More about The Use of Biomaterials in Internal Radiation Therapy.

Design, synthesis and evaluation of E2-25K derived stapled peptides (2020)
Journal Article
Watson, M. E., Scott, D., Jamieson, C., Layfield, R., & Mason, A. M. (2021). Design, synthesis and evaluation of E2-25K derived stapled peptides. Peptide Science, 113(1), Article e24158. https://doi.org/10.1002/pep2.24158

© 2020 The Authors. Peptide Science published by Wiley Periodicals, Inc. Stabilised peptides are now established as potential drug candidates to probe previously intractable molecular targets, such as protein-protein interactions. Herein, we report t... Read More about Design, synthesis and evaluation of E2-25K derived stapled peptides.

The ‘dark matter’ of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains (2019)
Journal Article
Radley, E., Long, J., Gough, K., & Layfield, R. (2019). The ‘dark matter’ of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochemical Society Transactions, 47(6), 1949-1962. https://doi.org/10.1042/bst20190869

Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined... Read More about The ‘dark matter’ of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains.

Molecular insights into an ancient form of Paget's disease of bone (2019)
Journal Article
Shaw, B., Burrell, C. L., Green, D., Navarro-Martinez, A., Scott, D., Daroszewska, A., van't Hof, R., Smith, L., Hargrave, F., Mistry, S., Bottrill, A., Kessler, B., Fisher, R., Singh, A., Dalmay, T., Fraser, W. D., Henneberger, K., King, T., Gonzalez, S., & Layfield, R. (2019). Molecular insights into an ancient form of Paget's disease of bone. Proceedings of the National Academy of Sciences, 116(21), 10463-10472. https://doi.org/10.1073/pnas.1820556116

We identify an ancient and atypical form of Paget’s disease of bone (PDB) in a collection of medieval skeletons exhibiting unusually extensive pathological changes, high disease prevalence, and low age-at-death estimations. Proteomic analysis of anci... Read More about Molecular insights into an ancient form of Paget's disease of bone.

De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation (2019)
Journal Article
Ducker, C., Chow, L., Saxton, J., Handwerger, J., McGregor, A., Strahl, T., Layfield, R., & Shaw, P. E. (2019). De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Research, 47(9), 4495-4508. https://doi.org/10.1093/nar/gkz166

ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and fal... Read More about De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation.