Skip to main content

Research Repository

Advanced Search

All Outputs (55)

Fluid Flow and Stress Field During Laser Cladding-Based Surface Repair of Aluminum Alloy: Multi-Track Simulation (2025)
Journal Article
Wu, Q., Chu, H., Liu, Z., Yang, L., Zhou, X., He, Y., & Nie, Y. (2025). Fluid Flow and Stress Field During Laser Cladding-Based Surface Repair of Aluminum Alloy: Multi-Track Simulation. Materials, 18(7), Article 1603. https://doi.org/10.3390/ma18071603

Laser cladding (LC) is a promising technique for repairing aluminum alloy components, yet challenges like cracks and uneven surfaces persist due to unstable melt flow and thermal stress. This study employs both fluid flow and stress field models to i... Read More about Fluid Flow and Stress Field During Laser Cladding-Based Surface Repair of Aluminum Alloy: Multi-Track Simulation.

A high-accuracy calibration-free spirometer based on Fiber Bragg Grating technique with neural network optimization (2025)
Journal Article
Zhang, R., Li, X., Li, P., PAN, H., Xu, R., Li, H., Si, Y., Yang, Y., Zhao, P., Lu, B., He, Y., Foong Kwong, C., Ren, Y., Bie, J., Wang, C., & Wang, J. (2025). A high-accuracy calibration-free spirometer based on Fiber Bragg Grating technique with neural network optimization. Sensors and Actuators A: Physical, 389, Article 116529. https://doi.org/10.1016/j.sna.2025.116529

Chronic respiratory diseases as one of the major global health problems induce a high mortality rate. Increasing needs raised from domestic healthcare require the development of new spirometers with the combination of multiple features, e.g. low cost... Read More about A high-accuracy calibration-free spirometer based on Fiber Bragg Grating technique with neural network optimization.

Screening of modular supramolecular star polymers for 3D printing of biomedical devices (2025)
Journal Article
Hart, L. R., Touré, A. B., Owen, R., Putri, N. R., Hague, R. J., Alexander, M. R., Rose, F. R., Zhou, Z., Irvine, D. J., Ruiz-Cantu, L., Turyanska, L., He, Y., Hayes, W., & Wildman, R. D. (2025). Screening of modular supramolecular star polymers for 3D printing of biomedical devices. Materials Today Communications, 45, Article 112206. https://doi.org/10.1016/j.mtcomm.2025.112206

Identifying suitable materials for additive manufacturing and 3D printing is a challenging task and there is a need to streamline the processes to achieve more rapid adoption of new feedstocks. We have developed a process of using modular supramolecu... Read More about Screening of modular supramolecular star polymers for 3D printing of biomedical devices.

Mechanics insights into particle ejection during laser cutting of metal alloys (2025)
Journal Article
Nie, Y., Low, K. W., Liu, Z., Yang, L., Wang, Y., Li, T., Li, H., & He, Y. (2025). Mechanics insights into particle ejection during laser cutting of metal alloys. International Journal of Advanced Manufacturing Technology, 137(3), 1173-1187. https://doi.org/10.1007/s00170-025-15192-9

Understanding the mechanism of the particle formation and ejection during laser cutting of metal alloys is crucial. It can not only ensure workpiece’s surface quality but also reduce the formation of micro-particles, a typical hazard to the operators... Read More about Mechanics insights into particle ejection during laser cutting of metal alloys.

One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP) (2025)
Journal Article
Guan, P., Zhao, Y., Wu, Y., Li, W., Zhang, X., Gao, X., Ou, X., Chai, W. S., He, Y., & Li, H. N. (2025). One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP). Materials Today Sustainability, 29, Article 101086. https://doi.org/10.1016/j.mtsust.2025.101086

CuO–ZnO–ZrO2 catalyst attracted significant attention for CO2 hydrogenation to methanol. Gyroid-based triply period minimal surface lattice structures feature highly ordered porous networks, which could be used to enhance catalytic performance and ef... Read More about One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP).

Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening (2025)
Presentation / Conference Contribution
Yong, L. X., Zhou, Z., Vallières, C., He, Y., Cuzzucoli Crucitti, V., Alexander, M. R., Avery, S., Wildman, R., & Irvine, D. (2024, August). Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening. Presented at International Conference on Computational & Experimental Engineering and Sciences, Singapore, Singapore

The fungal pathogen Candida albicans (C. albicans) is particularly problematic for immunocompromised patients and those with medical implants. Introducing Candida-resistant medical devices could potentially reduce mortality rates from such infections... Read More about Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening.

High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis (2024)
Journal Article
Attwood, S. J., Leech, D., He, Y., Croft, A., Hague, R. J., Irvine, D. J., Wildman, R. D., & Pordea, A. (2025). High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis. Chemical Engineering Science, 305, Article 121156. https://doi.org/10.1016/j.ces.2024.121156

3D printing has the potential to transform biocatalytic continuous flow reactor technology, where precise control of topology is essential for maximizing reactor performance. By embedding enzymatic catalysts in polymer hydrogel networks, continuous s... Read More about High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis.

Investigation of support structure configurations for selective laser melting of In718 (2024)
Journal Article
Nie, Y., Xu, C., Liu, Z., Yang, L., Li, T., & He, Y. (2025). Investigation of support structure configurations for selective laser melting of In718. Alexandria Engineering Journal, 112, 281-292. https://doi.org/10.1016/j.aej.2024.11.006

The Selective Laser Melting (SLM), as a widely used metallic Additive manufacturing (AM) process, relies heavily on support structures. This study investigated the impact of different support structure configurations on the quality of In718 samples f... Read More about Investigation of support structure configurations for selective laser melting of In718.

Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies (2024)
Journal Article
Wang, F., Cooper, N., He, Y., Hopton, B., Johnson, D., Zhao, P., Tuck, C. J., Hague, R., Fromhold, T. M., Wildman, R. D., Turyanska, L., & Hackermüller, L. (2025). Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies. Quantum Science and Technology, 10(1), Article 015019. https://doi.org/10.1088/2058-9565/ad8678

Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digit... Read More about Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies.

Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices (2024)
Journal Article
Yong, L. X., Sefton, J., Vallières, C., Rance, G. A., Hill, J., Cuzzucoli Crucitti, V., Dundas, A. A., Rose, F. R., Alexander, M. R., Wildman, R., He, Y., Avery, S. V., & Irvine, D. J. (2024). Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices. ACS Applied Materials and Interfaces, 16(40), 54508–54519. https://doi.org/10.1021/acsami.4c04833

This study reports the development of the first copolymer material that (i) is resistant to fungal attachment and hence biofilm formation, (ii) operates via a nonkilling mechanism, i.e., avoids the use of antifungal actives and the emergence of funga... Read More about Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices.

Reactive prodrug strategy for addictive manufactured controlled release devices (2024)
Presentation / Conference Contribution
Di, M., Cuzzucoli Crucitti, V., Krumins, E., Lion, A., Wildman, R., Taresco, V., & He, Y. (2024, August). Reactive prodrug strategy for addictive manufactured controlled release devices. Paper presented at International Conference on Computational & Experimental Engineering and Sciences 2024, Singapore

Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy (2024)
Journal Article
Zhou, X., Pei, Z., Liu, Z., Yang, L., Yin, Y., He, Y., Wu, Q., & Nie, Y. (2024). Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy. Materials, 17(14), Article 3559. https://doi.org/10.3390/ma17143559

Laser-based direct energy deposition (DED-LB/M) has been a promising option for the surface repair of structural aluminum alloys due to the advantages it offers, including a small heat-affected zone, high forming accuracy, and adjustable deposition m... Read More about Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy.

Integrating 3D Printed Grinding Tools and Closed-Loop Temperature Management for Optimal Surgical Outcomes (2024)
Journal Article
Wang, B., Li, K., Liu, G., Xia, L., Guan, W., Guo, J., Xu, J., Nie, Y., Zhao, Y., He, Y., & Li, H. (2024). Integrating 3D Printed Grinding Tools and Closed-Loop Temperature Management for Optimal Surgical Outcomes. Advanced Materials Technologies, https://doi.org/10.1002/admt.202400295

Grinding is a commonly employed surgical technique for the partial removal of bone. However, the grinding process often generates excessive heat at the interface, leading to localized temperature raise. This can result in irreversible damage to not o... Read More about Integrating 3D Printed Grinding Tools and Closed-Loop Temperature Management for Optimal Surgical Outcomes.

3D printed zirconia ceramic tool for bone repair with multifunction of drug release, drilling and implantation (2024)
Journal Article
Wang, B., Zhao, Y., Liu, G., Chen, Y., Mei, J., Xia, L., Tang, C., Qi, H., He, Y., & Li, H. N. (2024). 3D printed zirconia ceramic tool for bone repair with multifunction of drug release, drilling and implantation. Ceramics International, https://doi.org/10.1016/j.ceramint.2024.06.125

Ceramics is a promising material that has been widely used as artificial bones. However, most available investigations were devoted to new material development and implant structure design, while few of studies focused on innovative hybrid implants t... Read More about 3D printed zirconia ceramic tool for bone repair with multifunction of drug release, drilling and implantation.

Optimising printing fidelity of the single-nozzle based multimaterial direct ink writing for 3D food printing (2024)
Journal Article
Tian, Z., Zhong, Q., Zhang, H., Yin, T., Zhao, J., Liu, G., Zhao, Y., Li, H., & He, Y. (2024). Optimising printing fidelity of the single-nozzle based multimaterial direct ink writing for 3D food printing. Virtual and Physical Prototyping, 19(1), Article e2352075. https://doi.org/10.1080/17452759.2024.2352075

Single-nozzle based multimaterial direct ink writing enables voxel-based fabrication with superior printing efficiency than multi-nozzle protocol. This is attractive for food 3D printing process where efficiency matters for its application. However,... Read More about Optimising printing fidelity of the single-nozzle based multimaterial direct ink writing for 3D food printing.

Optimizing Printing Fidelity Of The Single-Nozzle Based Multimaterial Direct Ink Writing For 3D Food Printing (2024)
Journal Article
Tiana, Z., Zhong, Q., Zhang, H., Yin, T., Zhao, J., Liu, G., Zhaod, Y., Nan Li, H., & He, Y. (2024). Optimizing Printing Fidelity Of The Single-Nozzle Based Multimaterial Direct Ink Writing For 3D Food Printing. Virtual and Physical Prototyping, 19(1), Article e2352075. https://doi.org/10.1080/17452759.2024.2352075

Single-nozzle based multimaterial direct ink writing enables voxel-based fabrication with superior printing efficiency than multi-nozzle protocol. This is attractive for food 3D printing process where efficiency matters for its application. However,... Read More about Optimizing Printing Fidelity Of The Single-Nozzle Based Multimaterial Direct Ink Writing For 3D Food Printing.

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Evangelista Barreiros, M. I., Cantu, L. R., Tuck, C. J., Rose, F. R., Hague, R. J., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Inê Evangelista Barreiros, M., Cantu, L. R., Tuck, C., Rose, F. R. A. J., Hague, R. J. M., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction (2024)
Journal Article
Ma, Y., Tian, Z., Wang, B., Zhao, Y., Nie, Y., Wildman, R. D., Li, H., & He, Y. (2024). Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction. Materials and Design, 241, Article 112978. https://doi.org/10.1016/j.matdes.2024.112978

Like many pixel-based additive manufacturing (AM) techniques, digital light processing (DLP) based vat photopolymerization faces the challenge that the square pixel based processing strategy can lead to zigzag edges especially when feature sizes come... Read More about Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction.