Skip to main content

Research Repository

Advanced Search

All Outputs (30)

Determination of pore network accessibility in hierarchical porous solids (2017)
Journal Article
Rigby, S. P., Hasan, M., Stevens, L., Williams, H. E., & Fletcher, R. S. (2017). Determination of pore network accessibility in hierarchical porous solids. Industrial & Engineering Chemistry Research, 56(50), 14822-14831. https://doi.org/10.1021/acs.iecr.7b04659

This paper validates the hypothesis that the supposedly non-specific adsorbates nitrogen and argon wet heavy metals differently, and shows how this unexpected effect can be actively utilised to deliver information on pore inter-connectivity. To explo... Read More about Determination of pore network accessibility in hierarchical porous solids.

Dynamic simulation of the THAI heavy oil recovery process (2017)
Journal Article
Rabiu Ado, M., Greaves, M., & Rigby, S. P. (2017). Dynamic simulation of the THAI heavy oil recovery process. Energy and Fuels, 31(2), 1276-1284. https://doi.org/10.1021/acs.energyfuels.6b02559

Toe-to-Heel Air Injection (THAI) is a variant of conventional In-Situ Combustion (ISC) that uses a horizontal production well to recover mobilised partially upgraded heavy oil. It has a number of advantages over other heavy oil recovery techniques su... Read More about Dynamic simulation of the THAI heavy oil recovery process.

Detection of the delayed condensation effect and determination of its impact on the accuracy of gas adsorption pore size distributions (2016)
Journal Article
Rigby, S. P., Husan, M., Hitchcock, I., & Fletcher, R. S. (2017). Detection of the delayed condensation effect and determination of its impact on the accuracy of gas adsorption pore size distributions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 517, https://doi.org/10.1016/j.colsurfa.2016.12.043

Macroscopic, highly disordered, mesoporous materials present a continuing challenge for accurate pore structure characterization. The typical macroscopic variation in local average pore space descriptors means that methods capable of delivering stati... Read More about Detection of the delayed condensation effect and determination of its impact on the accuracy of gas adsorption pore size distributions.

Pore Structural Characterization of Fuel Cell Layers Using Integrated Mercury Porosimetry and Computerized X-ray Tomography (2016)
Journal Article
Malik, S., Smith, L., Sharman, J., Holt, E. M., & Rigby, S. P. (2016). Pore Structural Characterization of Fuel Cell Layers Using Integrated Mercury Porosimetry and Computerized X-ray Tomography. Industrial & Engineering Chemistry Research, 55(41), 10850-10859. https://doi.org/10.1021/acs.iecr.6b01617

The pore structure of the cathode catalyst layer of proton-exchange membrane (PEM) fuel cells is a major factor influencing cell performance. The nanostructure of the catalyst layer has been probed using a novel combination of mercury porosimetry wit... Read More about Pore Structural Characterization of Fuel Cell Layers Using Integrated Mercury Porosimetry and Computerized X-ray Tomography.

Techniques for direct experimental evaluation of structure–transport relationships in disordered porous solids (2016)
Journal Article
Nepryahin, A., Fletcher, R. S., Holt, E. M., & Rigby, S. P. (2016). Techniques for direct experimental evaluation of structure–transport relationships in disordered porous solids. Adsorption, 22(7), 993-1000. https://doi.org/10.1007/s10450-016-9806-9

Determining structure-transport relationships is critical to optimising the activity and selectivity performance of porous pellets acting as heterogeneous catalysts for diffusion-limited reactions. For amorphous porous systems determining the impact... Read More about Techniques for direct experimental evaluation of structure–transport relationships in disordered porous solids.

Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry (2016)
Journal Article
Nepryahin, A., Holt, E. M., Fletcher, R. S., & Rigby, S. P. (2016). Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry. Chemical Engineering Science, 152, 663-673. https://doi.org/10.1016/j.ces.2016.06.057

This work describes a new experimental approach that delivers novel information on structure-transport relationships in disordered porous pellets. Integrated rate of adsorption and mercury porosimetry experiments have been used to probe the relative... Read More about Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry.

Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents (2016)
Journal Article
Rogers, N. J., Hill-Casey, F., Stupic, K. F., Six, J. S., Lesbats, C., Rigby, S. P., …Meersmann, T. (2016). Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proceedings of the National Academy of Sciences, 113(12), 3164-3168. https://doi.org/10.1073/pnas.1600379113

Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the pr... Read More about Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

Insights into the influence of the cooling profile on the reconstitution times of amorphous lyophilized protein formulations (2015)
Journal Article

Lyophilized protein formulations must be reconstituted back into solution prior to patient administration and in this regard long reconstitution times are not ideal. The factors that govern reconstitution time remain poorly understood. The aim of thi... Read More about Insights into the influence of the cooling profile on the reconstitution times of amorphous lyophilized protein formulations.

NMR imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129 (2015)
Journal Article
Pavlovskaya, G., Six, J. S., Meersman, T., Gopinathan, N., & Rigby, S. P. (2015). NMR imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129. AIChE Journal, 61(11), 4013-4019. https://doi.org/10.1002/aic.14929

© 2015 American Institute of Chemical Engineers. Gas-phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study... Read More about NMR imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129.

Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids (2014)
Journal Article
Bafarawa, B., Nepryahin, A., Ji, L., Holt, E. M., Wang, J., & Rigby, S. P. (2014). Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Journal of Colloid and Interface Science, 426, 72-79. https://doi.org/10.1016/j.jcis.2014.03.053

The typical approach to analysing raw data, from common pore characterization methods such as gas sorption and mercury porosimetry, to obtain pore size distributions for disordered porous solids generally makes several critical assumptions that impac... Read More about Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.