Skip to main content

Research Repository

Advanced Search

All Outputs (100)

Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines (2024)
Journal Article
Korman, O., Nardo, M. D., Riccio, J., Murataliyev, M., Degano, M., & Gerada, C. (2024). Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines. IEEE Transactions on Industry Applications, https://doi.org/10.1109/TIA.2024.3462898

This paper proposes a highly accurate and computationally efficient distributed magnetic equivalent circuit (DMEC) model for synchronous electric machines. The model - based on a two directional flux paths cell element - is derived in a general fashi... Read More about Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines.

Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications (2024)
Journal Article
Madariaga, C., Gallardo, C., Reyes Juan A. Tapia, N., Jara, W., & Degano, M. (2024). Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications. IEEE Transactions on Energy Conversion, https://doi.org/10.1109/TEC.2024.3426480

This paper presents the design and evaluation of a new axial-flux low-speed and high-torque matrix-rotor induction machine. Iron wires embedded in a cupper matrix comprise the solid rotor structure. Specific design and sizing equations are provided f... Read More about Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications.

Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance (2024)
Journal Article
Gallicchio, G., Nardo, M. D., Cupertino, F., Varvolik, V., Buticchi, G., Degano, M., & Gerada, C. (2024). Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance. IEEE Transactions on Industry Applications, 60(5), 6725-6735. https://doi.org/10.1109/TIA.2024.3403967

This paper proposes a computational efficient and accurate hybrid analytical-finite element (FE) performance prediction methodology for synchronous reluctance (SyR) machines. The hybrid procedure consists in solving the d- and q-axis magnetic equival... Read More about Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance.

Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information (2024)
Journal Article
Wang, S., Varvolik, V., Bao, Y., Aboelhassan, A., Degano, M., Buticchi, G., & Zhang, H. (2024). Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information. Machines, 12(2), Article 96. https://doi.org/10.3390/machines12020096

The synchronous reluctance machine is well-known for its highly nonlinear magnetic saturation and cross-saturation characteristics. For high performance and high-efficiency control, the flux-linkage maps and maximum torque per ampere table are of par... Read More about Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information.

Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids (2024)
Journal Article
Wang, S., Prystupa, D., Bao, Y., Varvolik, V., Buticchi, G., Zhang, H., & Degano, M. (2024). Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids. Energies, 17(3), Article 615. https://doi.org/10.3390/en17030615

Synchronous reluctance machines are considered a cost-effective solution for several industrial applications and present potential efficiency benefits compared to induction motors. In industrial applications, power supply oscillations can lead to sho... Read More about Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids.

Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors (2024)
Journal Article
Naderiallaf, H., Degano, M., Gerada, C., & Gerada, D. (2024). Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors. IEEE Transactions on Dielectrics and Electrical Insulation, 31(4), 2084-2093. https://doi.org/10.1109/tdei.2024.3355032

This contribution elucidates the impact of the fillet radius, a geometric feature of rectangular insulated wires not commonly considered, on the partial discharge inception voltage (PDIV) in low-voltage machine turn-to-turn winding insulation. Initia... Read More about Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors.

Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines (2024)
Journal Article
Wu, J., Korman, O., Di Nardo, M., Degano, M., Gerada, C., Ashcroft, I., J.M. Hague, R., & T. Aboulkhair, N. (2024). Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines. IEEE Access, 12, 138921-138931. https://doi.org/10.1109/ACCESS.2024.3436643

Powder Bed Fusion - Laser Beam (PBF-LB), a form of additive manufacturing (AM) for Nd-Fe-B permanent magnets, is attracting substantial interest for its ability to process functional magnetic materials while capitalizing on AM's design flexibility an... Read More about Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines.

Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing (2023)
Journal Article
Naderiallaf, H., Degano, M., & Gerada, C. (2023). Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing. IEEE Transactions on Dielectrics and Electrical Insulation, https://doi.org/10.1109/TDEI.2023.3309780

This study aims to evaluate the impact of the bending radius of edgewise insulated wires on dielectric properties such as partial discharge inception voltage (PDIV), partial discharge extinction voltage (PDEV), dielectric dissipation factor (DDF), an... Read More about Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing.

PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing (2023)
Journal Article
Naderiallaf, H., Degano, M., & Gerada, C. (2023). PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing. IEEE Transactions on Dielectrics and Electrical Insulation, 1-10. https://doi.org/10.1109/tdei.2023.3307048

This contribution develops the partial discharge inception voltage (PDIV)-FEM-based model based on Schumann’s streamer inception criterion (SCSIC) with respect to thermal ageing time (TAGT) or the insulation lifetime for the turn-to-turn insulation o... Read More about PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing.

Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines (2023)
Journal Article
Madariaga, C., Gallardo, C., Tapia, J. A., Jara, W., Escobar, A., & Degano, M. (2023). Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines. IEEE Access, 11, 58349-58358. https://doi.org/10.1109/access.2023.3284753

Tolerance analysis on synchronous reluctance machines (SynRM) is mandatory if accurate refinements of the rotor structure are adopted, a must for low-ripple applications However, the impact of manufacturing/dimensional tolerances or material degradat... Read More about Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines.

Design of an aircraft generator with radial force control. (2023)
Journal Article
Brecher, C., Neus, S., Gärtner, M., Eckel, H.-M., Hoppert, M., James, B., Gerada, C., Degano, M., Ilkhani, M. R., & Di Nardo, M. (2023). Design of an aircraft generator with radial force control. Open Research Europe, 2, Article 73. https://doi.org/10.12688/openreseurope.14684.3

With the increasing electrical energy demands in aviation propulsion systems, the increase in the onboard generators’ power density is inevitable. During the flight, forces coming from the gearbox or gyroscopic forces generated by flight manoeuvres l... Read More about Design of an aircraft generator with radial force control..

Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics (2023)
Journal Article
Zhou, S., Ma, C., Zhang, N., Guo, Y., Degano, M., Gerada, C., Bu, F., Zeng, J., Li, Q., & An, Y. (2024). Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics. Journal of vibration engineering & technologies, 12(1), 821-836. https://doi.org/10.1007/s42417-023-00878-9

Purpose: This study provides a detailed investigation on the prediction and diagnosis of unsteady electromagnetic vibroacoustic performance of IPMSMs for electric vehicles under typical unsteady operating conditions with consideration of rotor step s... Read More about Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics.

Radical technology innovations for high‐speed transport; ePlanes to replace rail? (2023)
Journal Article
Riley, P. H., Degano, M., & Gerada, C. (2023). Radical technology innovations for high‐speed transport; ePlanes to replace rail?. IET Electrical Systems in Transportation, 13(1), Article 12061. https://doi.org/10.1049/els2.12061

This paper evaluates various modes of transport against the dual requirements of Net-Zero carbon emissions and user convenience, in particular, speed of travel and cost of transportation. Results show that when operated across a whole country, batter... Read More about Radical technology innovations for high‐speed transport; ePlanes to replace rail?.

Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits (2022)
Journal Article
Gallicchio, G., Nardo, M. D., Palmieri, M., Ilkhani, M. R., Degano, M., Gerada, C., & Cupertino, F. (2023). Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits. IEEE Transactions on Energy Conversion, 38(2), 1311-1324. https://doi.org/10.1109/tec.2022.3225224

Surface permanent magnet synchronous machines are one of the most widely adopted machine topologies in high-speed applications where efficiency and power factor cannot be compromised. Although the design of such machine type has been extensively inve... Read More about Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits.

2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios (2022)
Journal Article
Wang, M., Buticchi, G., Li, J., Gu, C., Gerada, D., Degano, M., Xu, L., Li, Y., Zhang, H., & Gerada, C. (2023). 2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios. IEEE Transactions on Transportation Electrification, 9(2), 2048-2058. https://doi.org/10.1109/TTE.2022.3210909

In high performance drive systems, wide bandwidth and reference tracking accuracy of current control loop are fundamental requirements. The conventional PI controller provides robustness against the machine parameter mismatching and zero steady-state... Read More about 2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios.

Comparison of AC Losses in the Winding of Electrical Machines with Fixed Strands Positions, Fixed Conductor Shapes and Random Winding (2022)
Journal Article
Bardalai, A., Gerada, D., Zou, T., Degano, M., Zhang, C., & Gerada, C. (2022). Comparison of AC Losses in the Winding of Electrical Machines with Fixed Strands Positions, Fixed Conductor Shapes and Random Winding. Energies, 15(15), Article 5701. https://doi.org/10.3390/en15155701

In high performance electric machines, the increase of fundamental frequency leads to additional losses in the winding due to parasitic effects such as the associated skin and proximity effects. In the first part, this paper presents an investigation... Read More about Comparison of AC Losses in the Winding of Electrical Machines with Fixed Strands Positions, Fixed Conductor Shapes and Random Winding.

Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios (2022)
Journal Article
Wang, M., Buticchi, G., Li, J., Gu, C., Gerada, D., Degano, M., …Geradab, C. (2022). Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2), https://doi.org/10.1109/jestpe.2022.3179184

Implementation of proportional-integral (PI) controllers in synchronous reference frame (SRF) is a well-established current control solution for electric drives. It is a general and effective method in digital control as long as the ratio of Sampling... Read More about Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios.

High Speed Permanent Magnet Assisted Synchronous Reluctance Machine - Part II: Performance Boundaries (2022)
Journal Article
Di Nardo, M., Gallicchio, G., Palmieri, M., Marfoli, A., Degano, M., Gerada, C., & Cupertino, F. (2022). High Speed Permanent Magnet Assisted Synchronous Reluctance Machine - Part II: Performance Boundaries. IEEE Transactions on Energy Conversion, 37(4), 2567-2577. https://doi.org/10.1109/tec.2022.3176383

The insertion of permanent magnets (PMs) within the rotor slots of Synchronous Reluctance Machines (SyRM) is the most common design strategy used to increase significantly their performance. In this paper it is shown how a permanent magnet assisted s... Read More about High Speed Permanent Magnet Assisted Synchronous Reluctance Machine - Part II: Performance Boundaries.

On the Use of Topology Optimization for Synchronous Reluctance Machines Design (2022)
Journal Article
Korman, O., Di Nardo, M., Degano, M., & Gerada, C. (2022). On the Use of Topology Optimization for Synchronous Reluctance Machines Design. Energies, 15(10), Article 3719. https://doi.org/10.3390/en15103719

Synchronous reluctance (SynRel) machines are considered one of the promising and cost-effective solutions to many industrial and mobility applications. Nonetheless, achieving an optimal design is challenging due to the complex correlation between geo... Read More about On the Use of Topology Optimization for Synchronous Reluctance Machines Design.

Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison (2022)
Journal Article
Murataliyev, M., Degano, M., Nardo, M. D., Bianchi, N., & Gerada, C. (2022). Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison. Proceedings of the IEEE, 110(3), 382-399. https://doi.org/10.1109/jproc.2022.3145662

In the last decade, the trend toward higher efficiency and higher torque density electrical machines (EMs) without permanent magnets (PMs) for the industrial sector has rapidly increased. This work discusses the latest research and industrial advance... Read More about Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison.