Skip to main content

Research Repository

Advanced Search

All Outputs (68)

Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations (2024)
Journal Article
Pacino, A., La Rocca, A., Smith, J., Berryman, J., Fowell, M., Cairns, A., & Fay, M. W. (2024). Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations. SAE International Journal of Fuels and Lubricants, 18(1), Article 04-18-01-0002. https://doi.org/10.4271/04-18-01-0002

Morphology, nanostructure, and composition of soot extracted from the oil sump of different heavy-duty engines operated under dynamometer and field conditions were investigated. Soot characteristics were then compared to a carbon black sample. Soot w... Read More about Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations.

Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide (2024)
Journal Article
Cassioli, M. L., Fay, M., Turyanska, L., Bradshaw, T. D., Thomas, N. R., & Pordea, A. (2024). Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Advances, 14(20), 14008-14016. https://doi.org/10.1039/d3ra07430g

Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the p... Read More about Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide.

Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol (2024)
Journal Article
LeMercier, T. M., Thangamuthu, M., Kohlrausch, E. C., Chen, Y., Stoppiello, C. T., Fay, M. W., Rance, G. A., Aliev, G. N., Theis, W., Biskupek, J., Kaiser, U., Lanterna, A. E., Alves Fernandes, J., & Khlobystov, A. N. (2024). Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol. Sustainable Energy and Fuels, 1691-1703. https://doi.org/10.1039/D4SE00028E

Carbon nitride (C3N4) possesses both a band gap in the visible range and a low-lying conduction band potential, suitable for water splitting and CO2 reduction reactions (CO2RR). Yet, bulk C3N4 (b-C3N4) suffers from structural disorder leading to slug... Read More about Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol.

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds (2024)
Journal Article
Flinn, B. T., Rance, G. A., Cull, W. J., Cardillo-Zallo, I., Pitcairn, J., Cliffe, M. J., Fay, M. W., Tyler, A. J., Weare, B. L., Stoppiello, C. T., Davies, E. S., Mather, M. L., & Khlobystov, A. N. (2024). Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano, 18(9), 7148–7160. https://doi.org/10.1021/acsnano.3c11820

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a ne... Read More about Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds.

Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas (2024)
Journal Article
Cardillo-Zallo, I., Biskupek, J., Bloodworth, S., Marsden, E. S., Fay, M. W., Ramasse, Q. M., Rance, G. A., Stoppiello, C. T., Cull, W. J., Weare, B. L., Whitby, R. J., Kaiser, U., Brown, P. D., & Khlobystov, A. N. (2024). Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS Nano, 18(4), 2958–2971. https://doi.org/10.1021/acsnano.3c07853

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the na... Read More about Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas.

Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture (2023)
Journal Article
Woodliffe, J. L., Johnston, A.-L., Fay, M., Ferrari, R., Gomes, R. L., Lester, E., …Laybourn, A. (2023). Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture. Materials Advances, 4(11), 5838-5849. https://doi.org/10.1039/D3MA00351E

Metal-organic frameworks (MOFs) have shown excellent potential for carbon dioxide capture applications due to their high sorption capacities and selectivities. However, MOFs are typically thermally insulating, and so thermal CO2 regeneration is chall... Read More about Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture.

Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid (2023)
Journal Article
Flinn, B. T., Radu, V., Fay, M. W., Tyler, A. J., Pitcairn, J., Cliffe, M. J., …Khlobystov, A. N. (2023). Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. Nanoscale Advances, 2023(23), 6423-6434. https://doi.org/10.1039/d3na00155e

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical... Read More about Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid.

Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3 (2023)
Journal Article
Kluth, E., Fay, M., Parmenter, C., Roberts, J., Smith, E., Stoppiello, C., …Feneberg, M. (2023). Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3. Applied Physics Letters, 122(9), Article 092101. https://doi.org/10.1063/5.0139725

Redshift of the absorption onset and amplitude increase in the ultraviolet complex dielectric function (DF) of corundum-like α-(TixGa1-x)2O3 with increasing Ti content is presented. α-Ga2O3 thin film samples alloyed with Ti up to x = 0.61 are grown f... Read More about Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., …Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope (2022)
Journal Article
Fung, K. L., Weare, B. L., Fay, M. W., Argent, S. P., & Khlobystov, A. N. (2023). Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope. Micron, 165, Article 103395. https://doi.org/10.1016/j.micron.2022.103395

Reactivity of a series of related molecules under the 80 keV electron beam have been investigated and correlated with their structures and chemical composition. Hydrogenated and halogenated derivatives of hexaazatrinaphthylene, coronene, and phthaloc... Read More about Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., O'Shea, J. N., Khlobystov, A. N., Walsh, D. A., Johnson, L. R., Felfel, R. M., Ahmed, I., & Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12) (2022)
Journal Article
Turley, A. T., Hanson-Heine, M. W. D., Argent, S. P., Hu, Y., Jones, T. A., Fay, M., & Woodward, S. (2023). Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12). Chemical Science, 14(1), 70-77. https://doi.org/10.1039/d2sc05348a

Previously inaccessible large S8-corona[n]arene macrocycles (n = 8-12) with alternating aryl and 1,4-C6F4 subunits are easily prepared on up to gram scales, without the need for chromatography (up to 45% yield, 10 different examples) through new high... Read More about Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12).

Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties (2022)
Journal Article
Hu, C., Zhang, H., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties. Polymers, 14(13), Article 2583. https://doi.org/10.3390/polym14132583

In this study, graphene oxide–carbon nanotubes nanostructures decorated with nickel nanoparticles (NiGNT) were prepared through the molecular-level-mixing method, followed by a reduction process, and then applied as reinforcements to enhance the epox... Read More about Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties.

Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites (2021)
Journal Article
Hu, C., Liu, T., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites. Composites Science and Technology, 218, Article 109201. https://doi.org/10.1016/j.compscitech.2021.109201

A nanostructure of graphene oxide (GO) and carbon nanotubes (CNTs) decorated with silver nanoparticles (AgGNT) has been prepared via a molecular-level-mixing (MLM) method followed by a subsequent freeze-drying and reduction process. The obtained well... Read More about Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites.

Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging (2021)
Journal Article
Martinez De La Cruz, B., Markus, R., Malla, S., Haig, M. I., Gell, C., Sang, F., …Knight, H. M. (2021). Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Molecular Psychiatry, 26(12), 7141-7153. https://doi.org/10.1038/s41380-021-01282-z

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapse... Read More about Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging.

Kerogen nanoscale structure and CO2 adsorption in shale micropores (2021)
Journal Article
Gonciaruk, A., Hall, M. R., Fay, M. W., Parmenter, C. D. J., Vane, C. H., Khlobystov, A. N., & Ripepi, N. (2021). Kerogen nanoscale structure and CO2 adsorption in shale micropores. Scientific Reports, 11, Article 3920. https://doi.org/10.1038/s41598-021-83179-z

Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Usi... Read More about Kerogen nanoscale structure and CO2 adsorption in shale micropores.

Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours (2020)
Journal Article
McCrorie, P., Mistry, J., Taresco, V., Lovato, T., Fay, M., Ward, I., …Rahman, R. (2020). Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 157, 108-120. https://doi.org/10.1016/j.ejpb.2020.10.005

Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tu... Read More about Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours.

Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling (2020)
Journal Article
Abdelrazig, S., Safo, L., Rance, G. A., Fay, M. W., Theodosiou, E., Topham, P. D., …Fernández-Castané, A. (2020). Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling. RSC Advances, 10(54), 32548-32560. https://doi.org/10.1039/d0ra05326k

Magnetosomes are nano-sized magnetic nanoparticles with exquisite properties that can be used in a wide range of healthcare and biotechnological applications. They are biosynthesised by magnetotactic bacteria (MTB), such as Magnetospirillum gryphiswa... Read More about Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling.

Accurate EELS background subtraction – an adaptable method in MATLAB (2020)
Journal Article
Fung, K. L., Fay, M. W., Collins, S. M., Kepaptsoglou, D. M., Skowron, S. T., Ramasse, Q. M., & Khlobystov, A. N. (2020). Accurate EELS background subtraction – an adaptable method in MATLAB. Ultramicroscopy, 217, Article 113052. https://doi.org/10.1016/j.ultramic.2020.113052

Electron energy-loss spectroscopy (EELS) is a technique that can give useful information on elemental composition and bonding environments. However in practice, the complexity of the background contributions, which can arise from multiple sources, ca... Read More about Accurate EELS background subtraction – an adaptable method in MATLAB.

Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis (2019)
Journal Article
Pfau, S. A., La Rocca, A., & Fay, M. W. (2020). Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis. Combustion and Flame, 211, 430-444. https://doi.org/10.1016/j.combustflame.2019.10.020

Fringe analysis is a commonly used method to quantify soot nanostructures. However, the settings of the involved filters and their impact on the results are rarely addressed. In this study, the influence of the three filter parameters as well as two... Read More about Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis.