Skip to main content

Research Repository

Advanced Search

All Outputs (22)

Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Designing Optimal Loop, Saddle, and Ellipse-Based Magnetic Coils by Spherical Harmonic Mapping (2023)
Journal Article
Hobson, P. J., Hardwicke, N. L., Davis, A., Smith, T. X., Morley, C., Packer, M., Holmes, N., Weil, M. A., Brookes, M. J., Bowtell, R., & Fromhold, M. (2023). Designing Optimal Loop, Saddle, and Ellipse-Based Magnetic Coils by Spherical Harmonic Mapping. IEEE Transactions on Instrumentation and Measurement, 72, Article 1005815. https://doi.org/10.1109/TIM.2023.3284138

Adaptable, low-cost, coils designed by carefully selecting the arrangements and geometries of simple primitive units are used to generate magnetic fields for diverse applications. These extend from magnetic resonance and fundamental physics experimen... Read More about Designing Optimal Loop, Saddle, and Ellipse-Based Magnetic Coils by Spherical Harmonic Mapping.

Benchtop magnetic shielding for benchmarking atomic magnetometers (2023)
Journal Article
Hobson, P. J., Holmes, N., Patel, P., Styles, B., Chalmers, J., Morley, C., Davis, A., Packer, M., Smith, T. X., Raudonyte, S., Holmes, D., Harrison, R., Woolger, D., Sims, D., Brookes, M. J., Bowtell, R., & Fromhold, M. (2023). Benchtop magnetic shielding for benchmarking atomic magnetometers. IEEE Transactions on Instrumentation and Measurement, 72, Article 6007309. https://doi.org/10.1109/tim.2023.3293540

Here, a benchtop hybrid magnetic shield containing four mumetal cylinders and nine internal flexible printed circuit boards is designed, constructed, tested, and operated. The shield is designed specifically as a test-bed for building and operating u... Read More about Benchtop magnetic shielding for benchmarking atomic magnetometers.

Naturalistic Hyperscanning with Wearable Magnetoencephalography (2023)
Journal Article
Holmes, N., Rea, M., Hill, R. M., Boto, E., Leggett, J., Edwards, L. J., …Bowtell, R. (2023). Naturalistic Hyperscanning with Wearable Magnetoencephalography. Sensors, 23(12), Article 5454. https://doi.org/10.3390/s23125454

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substra... Read More about Naturalistic Hyperscanning with Wearable Magnetoencephalography.

Casimir-Polder interactions of S-state Rydberg atoms with graphene (2023)
Journal Article
Wongcharoenbhorn, K., Koller, C., Fromhold, T. M., & Li, W. (2023). Casimir-Polder interactions of S-state Rydberg atoms with graphene. Physical Review A, 107(4), Article 043308. https://doi.org/10.1103/PhysRevA.107.043308

We investigate the thermal Casimir-Polder (CP) potential of 87Rb atoms in Rydberg nS-states near single- and double-layer graphene, and briefly look into the lifetimes near graphene-hexagonal boron nitride (hBN) multilayered structures. The dependenc... Read More about Casimir-Polder interactions of S-state Rydberg atoms with graphene.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., …Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.

Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm (2022)
Journal Article
Packer, M., Hobson, P. J., Davis, A., Holmes, N., Leggett, J., Glover, P., Hardwicke, N. L., Brookes, M. J., Bowtell, R., & Fromhold, T. M. (2022). Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm. Journal of Applied Physics, 131(9), Article 093902. https://doi.org/10.1063/5.0071986

Magnetically sensitive experiments and newly developed quantum technologies with integrated high-permeability magnetic shields require increasing control of their magnetic field environment and reductions in size, weight, power, and cost. However, ma... Read More about Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm.

Optimised hybrid shielding and magnetic field control for emerging quantum technologies (2021)
Presentation / Conference Contribution
Hobson, P. J., Packer, M., Holmes, N., Davis, A., Patel, P., Holmes, D., Harrison, R., Chalmers, J., Styles, B., Woolger, D., Sims, D., Brookes, M. J., & Fromhold, T. M. (2021, September). Optimised hybrid shielding and magnetic field control for emerging quantum technologies. Presented at SPIE PHOTONEX, Glasgow, United Kingdom

The accurate control of magnetic fields is a cornerstone of multiple emerging quantum technologies. These technologies often require passive high permeability magnetic shielding and internal active field-generating coils to create their own bespoke m... Read More about Optimised hybrid shielding and magnetic field control for emerging quantum technologies.

Performance-Optimized Components for Quantum Technologies via Additive Manufacturing (2021)
Journal Article
Madkhaly, S. H., Coles, L. A., Morley, C., Colquhoun, C. D., Fromhold, T. M., Cooper, N., & Hackermüller, L. (2021). Performance-Optimized Components for Quantum Technologies via Additive Manufacturing. PRX Quantum, 2(3), Article 030326. https://doi.org/10.1103/prxquantum.2.030326

Novel quantum technologies and devices place unprecedented demands on the performance of experimental components, while their widespread deployment beyond the laboratory necessitates increased robustness and fast affordable production. We show how th... Read More about Performance-Optimized Components for Quantum Technologies via Additive Manufacturing.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Additively manufactured ultra-high vacuum chamber for portable quantum technologies (2021)
Journal Article
Cooper, N., Coles, L., Everton, S., Maskery, I., Campion, R., Madkhaly, S., …Hackermüller, L. (2021). Additively manufactured ultra-high vacuum chamber for portable quantum technologies. Additive Manufacturing, 40, Article 101898. https://doi.org/10.1016/j.addma.2021.101898

© 2021 Additive manufacturing is having a dramatic impact on research and industry across multiple sectors, but the production of additively manufactured systems for ultra-high vacuum applications has so far proved elusive and widely been considered... Read More about Additively manufactured ultra-high vacuum chamber for portable quantum technologies.

Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation (2021)
Journal Article
Andreev, A. V., Balanov, A. G., Fromhold, T. M., Greenaway, M. T., Hramov, A. E., Li, W., …Zagoskin, A. M. (2021). Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation. npj Quantum Information, 7(1), Article 1. https://doi.org/10.1038/s41534-020-00339-1

Progress in the creation of large scale, artificial quantum coherent structures demands the investigation of their nonequilibrium dynamics when strong interactions, even between remote parts, are non-perturbative. Analysis of multiparticle quantum co... Read More about Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Towards OPM-MEG in a virtual reality environment (2019)
Journal Article
Roberts, G., Holmes, N., Alexander, N., Boto, E., Leggett, J., Hill, R. M., …Brookes, M. J. (2019). Towards OPM-MEG in a virtual reality environment. NeuroImage, 199, 408-417. https://doi.org/10.1016/j.neuroimage.2019.06.010

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications... Read More about Towards OPM-MEG in a virtual reality environment.

Tunnel spectroscopy of localised electronic states in hexagonal boron nitride (2018)
Journal Article
Patanè, A., Mishchenko, A., Greenaway, M., Vdovin, E., Ghazaryan, D., Misra, A., …Eaves, L. (2018). Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 1(1), Article 94. https://doi.org/10.1038/s42005-018-0097-1

Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applicat... Read More about Tunnel spectroscopy of localised electronic states in hexagonal boron nitride.

3D-printed components for quantum devices (2018)
Journal Article
Saint, R., Evans, W., Zhou, Y., Barrett, T. J., Fromhold, T., Saleh, E., …Krüger, P. (2018). 3D-printed components for quantum devices. Scientific Reports, 8, https://doi.org/10.1038/s41598-018-26455-9

Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential o... Read More about 3D-printed components for quantum devices.

Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots (2017)
Journal Article
Makarovsky, O., Turyanska, L., Mori, N., Greenaway, M., Eaves, L., Patanè, A., …Yakimova, R. (in press). Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots. 2D Materials, 4(3), https://doi.org/10.1088/2053-1583/aa76bb

We report a simultaneous increase of carrier concentration, mobility and photoresponsivity when SiC-grown graphene is decorated with a surface layer of colloidal PbS quantum dots, which act as electron donors. The charge on the ionised dots is spatia... Read More about Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots.

A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers (2017)
Journal Article
Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., …Brookes, M. J. (2017). A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149, 404-414. https://doi.org/10.1016/j.neuroimage.2017.01.034

© 2017 The Authors Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperatur... Read More about A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers.

The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper) (2016)
Presentation / Conference Contribution
Bongs, K., Boyer, V., Cruise, M., Freise, A., Holynski, M., Hughes, J., Kaushik, A., Lien, Y.-H., Niggebaum, A., Perea-Ortiz, M., Petrov, P., Plant, S., Singh, Y., Stabrawa, A., Paul, D., Sorel, M., Cumming, D., Marsh, J., Bowtell, R. W., Bason, M., …John, P. (2016, April). The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper). Presented at SPIE Photonics Europe, 2016, Brussels, Belgium

The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices,... Read More about The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper).