Skip to main content

Research Repository

Advanced Search

All Outputs (89)

Trace metal accumulation through the environment and wildlife at two derelict lead mines in Wales (2024)
Journal Article
Sartorius, A., Johnson, M. F., Young, S., Bennett, M., Baiker, K., Edwards, P., & Yon, L. (2024). Trace metal accumulation through the environment and wildlife at two derelict lead mines in Wales. Heliyon, 10(14), Article e34265. https://doi.org/10.1016/j.heliyon.2024.e34265

Trace metal pollution is globally widespread, largely resulting from human activities. Due to the persistence and high toxicity of trace metals, these pollutants can have serious effects across ecosystems. However, few studies have directly assessed... Read More about Trace metal accumulation through the environment and wildlife at two derelict lead mines in Wales.

Multiple novel caliciviruses identified from stoats (Mustela erminea) in the United Kingdom (2024)
Journal Article
Hinds, J., Apaa, T., Parry, R. H., Withers, A. J., MacKenzie, L., Staley, C., Morrison, J., Bennett, M., Bremner-Harrison, S., Chadwick, E. A., Hailer, F., Harrison, S. W., Lambin, X., Loose, M., Mathews, F., Tarlinton, R., & Blanchard, A. (2024). Multiple novel caliciviruses identified from stoats (Mustela erminea) in the United Kingdom. Access Microbiology, 6(7), Article 000813.v4. https://doi.org/10.1099/acmi.0.000813.v4

The Caliciviridae family, comprising positive-sense RNA viruses, is characterised by its non-enveloped, small virions, broad host range, and notable tendency for host switching. These viruses are primarily associated with gastroenteric disease, thoug... Read More about Multiple novel caliciviruses identified from stoats (Mustela erminea) in the United Kingdom.

Root-soil-microbiome management is key to the success of Regenerative Agriculture (2024)
Journal Article
Mooney, S., Castrillo, G., Cooper, H., & Bennett, M. (2024). Root-soil-microbiome management is key to the success of Regenerative Agriculture. Nature Food, 5, 451–453. https://doi.org/10.1038/s43016-024-01001-1

Building soil health and manipulating the soil microbiome, alongside targeted plant breeding that prioritizes preferential root architectural development, hold the key to the future success of regenerative agriculture. Greater integration is needed b... Read More about Root-soil-microbiome management is key to the success of Regenerative Agriculture.

Root hairs facilitate rice root penetration into compacted layers (2024)
Journal Article
Kong, X., Yu, S., Xiong, Y., Song, X., Nevescanin-Moreno, L., Wei, X., …Huang, G. (2024). Root hairs facilitate rice root penetration into compacted layers. Current Biology, 34(10), 2039-2048. https://doi.org/10.1016/j.cub.2024.03.064

Compacted soil layers adversely affect rooting depth and access to deeper nutrient and water resources, thereby impacting climate resilience of crop production and global food security. Root hair plays well-known roles in facilitating water and nutri... Read More about Root hairs facilitate rice root penetration into compacted layers.

Genetic regulation of the root angle in cereals (2024)
Journal Article
Kirschner, G. K., Hochholdinger, F., Salvi, S., Bennett, M. J., Huang, G., & Bhosale, R. A. (2024). Genetic regulation of the root angle in cereals. Trends in Plant Science, 29(7), 814-822. https://doi.org/10.1016/j.tplants.2024.01.008

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture o... Read More about Genetic regulation of the root angle in cereals.

Root plasticity vs. elasticity – When are responses acclimative? (2024)
Journal Article
Colombi, T., Pandey, B. K., Chawade, A., Bennett, M. J., Mooney, S., & Keller, T. (2024). Root plasticity vs. elasticity – When are responses acclimative?. Trends in Plant Science, https://doi.org/10.1016/j.tplants.2024.01.003

Spatiotemporal soil heterogeneity and the resulting edaphic stress cycles can be decisive for crop growth. However, our understanding of the acclimative value of root responses to heterogeneous soil conditions remains limited. We outline a framework... Read More about Root plasticity vs. elasticity – When are responses acclimative?.

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, 12, Article RP86169. https://doi.org/10.7554/elife.86169.3

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, https://doi.org/10.7554/eLife.86169

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Uncovering root compaction response mechanisms: new insights and opportunities (2023)
Journal Article
Pandey, B. K., & Bennett, M. J. (2024). Uncovering root compaction response mechanisms: new insights and opportunities. Journal of Experimental Botany, 75(2), 578-583. https://doi.org/10.1093/jxb/erad389

Compaction disrupts soil structure, reducing root growth, nutrient and water uptake, gas exchange, and microbial growth. Root growth inhibition by soil compaction was originally thought to reflect the impact of mechanical impedance and reduced water... Read More about Uncovering root compaction response mechanisms: new insights and opportunities.

Turning up the volume: How root branching adaptive responses aid water foraging (2023)
Journal Article
Mehra, P., Fairburn, R., Leftley, N., Banda, J., & Bennett, M. J. (2023). Turning up the volume: How root branching adaptive responses aid water foraging. Current Opinion in Plant Biology, 75, Article 102405. https://doi.org/10.1016/j.pbi.2023.102405

Access to water is critical for all forms of life. Plants primarily access water through their roots. Root traits such as branching are highly sensitive to water availability, enabling plants to adapt their root architecture to match soil moisture di... Read More about Turning up the volume: How root branching adaptive responses aid water foraging.

Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize (2023)
Journal Article
Schneider, H. M., Lor, V. S., Zhang, X., Saengwilai, P., Hanlon, M. T., Klein, S. P., …Lynch, J. P. (2023). Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize. Proceedings of the National Academy of Sciences, 120(12), Article e2219668120. https://doi.org/10.1073/pnas.2219668120

Root anatomical phenotypes present a promising yet underexploited avenue to deliver major improvements in yield and climate resilience of crops by improving water and nutrient uptake. For instance, the formation of root cortical aerenchyma (RCA) sign... Read More about Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize.

Relationships between soil and badger elemental concentrations across a heterogeneously contaminated landscape (2023)
Journal Article
Sartorius, A., Cahoon, M., Corbetta, D., Grau-Roma, L., Johnson, M. F., Sandoval Barron, E., …Bennett, M. (2023). Relationships between soil and badger elemental concentrations across a heterogeneously contaminated landscape. Science of the Total Environment, 869, Article 161684. https://doi.org/10.1016/j.scitotenv.2023.161684

Understanding the links between environmental and wildlife elemental concentrations is key to help assess ecosystem functions and the potential effects of legacy pollutants. In this study, livers from 448 European badgers (Meles meles) collected acro... Read More about Relationships between soil and badger elemental concentrations across a heterogeneously contaminated landscape.

Hydraulic flux–responsive hormone redistribution determines root branching (2022)
Journal Article
Mehra, P., Pandey, B. K., Melebari, D., Banda, J., Leftley, N., Couvreur, V., …Bennett, M. J. (2022). Hydraulic flux–responsive hormone redistribution determines root branching. Science, 378(6621), 762-768. https://doi.org/10.1126/science.add3771

Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we s... Read More about Hydraulic flux–responsive hormone redistribution determines root branching.

Modeling root loss reveals impacts on nutrient uptake and crop development (2022)
Journal Article
Schäfer, E. D., Owen, M. R., Band, L. R., Farcot, E., Bennett, M. J., & Lynch, J. P. (2022). Modeling root loss reveals impacts on nutrient uptake and crop development. Plant Physiology, 190(4), 2260-2278. https://doi.org/10.1093/plphys/kiac405

Abstract Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decr... Read More about Modeling root loss reveals impacts on nutrient uptake and crop development.

Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms (2022)
Journal Article
Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., …Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences, 119(30), Article e2201072119. https://doi.org/10.1073/pnas.2201072119

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene... Read More about Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms.

Human health implications from consuming eggs produced near a derelict metalliferous mine: a case study (2022)
Journal Article
Sartorius, A., Johnson, M., Young, S., Bennett, M., Baiker, K., Edwards, P., & Yon, L. (2022). Human health implications from consuming eggs produced near a derelict metalliferous mine: a case study. Food Additives and Contaminants: Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 39(6), 1074-1085. https://doi.org/10.1080/19440049.2022.2062059

Lead pollution from metalliferous mines can have major environmental and health effects long after the mines have closed. Animals living near derelict mine sites can inadvertently ingest lead-contaminated soils, causing them to accumulate lead and po... Read More about Human health implications from consuming eggs produced near a derelict metalliferous mine: a case study.

Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis (2022)
Journal Article
De Pessemier, J., Moturu, T. R., Nacry, P., Ebert, R., De Gernier, H., Tillard, P., …Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73(11), 3569-3583

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treat... Read More about Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis.

Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux (2022)
Journal Article
Mellor, N. L., Voß, U., Ware, A., Janes, G., Barrack, D., Bishopp, A., …Band, L. R. (2022). Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell, 34(6), 2309–2327. https://doi.org/10.1093/plcell/koac086

Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin-efflux machinery in plants. Over the last two decades experimental studies have shown that modifying ABCB expression affects auxin... Read More about Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

Orchestration of ethylene and gibberellin signals determines primary root elongation in rice (2022)
Journal Article
Qin, H., Pandey, B. K., Li, Y., Huang, G., Wang, J., Quan, R., …Huang, R. (2022). Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. Plant Cell, 34(4), 1273-1288. https://doi.org/10.1093/plcell/koac008

Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying... Read More about Orchestration of ethylene and gibberellin signals determines primary root elongation in rice.