Skip to main content

Research Repository

Advanced Search

Modeling root loss reveals impacts on nutrient uptake and crop development

Schäfer, Ernst D; Owen, Markus R; Band, Leah R; Farcot, Etienne; Bennett, Malcolm J; Lynch, Jonathan P

Modeling root loss reveals impacts on nutrient uptake and crop development Thumbnail


Authors

Ernst D Schäfer

LEAH BAND leah.band@nottingham.ac.uk
Professor of Mathematical Biology

Jonathan P Lynch



Abstract

Abstract Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decreasing the resources required to maintain the root system. Here, we simulated a range of root phenotypes in different soils and root loss scenarios for barley (Hordeum vulgare), common bean (Phaseolus vulgaris) and maize (Zea mays) using and extending the open-source, functional-structural root/soil simulation model OpenSimRoot. The model enabled us to quantify the impact of root loss on shoot dry weight in these scenarios and identify in which scenarios root loss is beneficial, detrimental, or has no effect. The simulations showed that root loss is detrimental for phosphorus uptake in all tested scenarios whereas nitrogen uptake was relatively insensitive to root loss unless main root axes were lost. Loss of axial roots reduced shoot dry weight for all phenotypes in all species and soils, whereas lateral root loss had a smaller impact. In barley and maize plants with high lateral branching density that were not phosphorus-stressed, loss of lateral roots increased shoot dry weight. The fact that shoot dry weight increased due to root loss in these scenarios indicates that plants overproduce roots for some environments, such as those found in high-input agriculture. We conclude that a better understanding of the effects of root loss on plant development is an essential part of optimizing root system phenotypes for maximizing yield.

Citation

Schäfer, E. D., Owen, M. R., Band, L. R., Farcot, E., Bennett, M. J., & Lynch, J. P. (2022). Modeling root loss reveals impacts on nutrient uptake and crop development. Plant Physiology, 190(4), 2260-2278. https://doi.org/10.1093/plphys/kiac405

Journal Article Type Article
Acceptance Date Jul 26, 2022
Online Publication Date Sep 1, 2022
Publication Date Sep 1, 2022
Deposit Date Sep 23, 2022
Publicly Available Date Mar 29, 2024
Journal Plant Physiology
Print ISSN 0032-0889
Electronic ISSN 1532-2548
Publisher Oxford University Press (OUP)
Peer Reviewed Peer Reviewed
Volume 190
Issue 4
Pages 2260-2278
DOI https://doi.org/10.1093/plphys/kiac405
Keywords Plant Science; Genetics; Physiology
Public URL https://nottingham-repository.worktribe.com/output/11187987
Publisher URL https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiac405/6680196

Files




You might also like



Downloadable Citations