Skip to main content

Research Repository

Advanced Search

All Outputs (46)

Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR (2024)
Journal Article
Austin, J. S., Xiao, W., Wang, F., Cottam, N. D., Rivers, G., Ward, E. B., …James, T. S. (2024). Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. Journal of Materials Chemistry C, https://doi.org/10.1039/D4TC01917B

Colloidal low-dimensional photo-sensitive nanomaterials have attracted significant interest for optoelectronic device applications where inkjet printing offers a high accuracy and low waste route for their deposition on silicon-based, as well as flex... Read More about Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., …He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide (2024)
Journal Article
Cassioli, M. L., Fay, M., Turyanska, L., Bradshaw, T. D., Thomas, N. R., & Pordea, A. (2024). Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Advances, 14(20), 14008-14016. https://doi.org/10.1039/d3ra07430g

Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the p... Read More about Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide.

arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+ (2024)
Journal Article
Xiao, W., Chen, J., Wang, F., Luan, W., Wu, Y., & Turyanska, L. (2024). Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+. Advanced Optical Materials, 12(16), Article 2303132. https://doi.org/10.1002/adom.202303132

NaYbF4 upconverting nanoparticles (UCNPs) have enhanced optical properties compared to the NaYF4 UCNPs. However, synthesis of monodisperse NaYbF4 with controllable size and optical properties poses challenges, and the mechanism of phase transformatio... Read More about Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+.

Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy” (2023)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. D. (2024). Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy”. ACS Omega, 9(1), Article 2012. https://doi.org/10.1021/acsomega.3c09291

Neil R. Thomas was added as an author. The change in authorship is reflected in the authorship of this Correction.

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes (2023)
Journal Article
Zhang, C., Yuan, H., Kong, L., Wang, L., Wang, Y., Li, Y., …Yang, X. (2023). Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes. Advanced Optical Materials, 11(14), Article 2300147. https://doi.org/10.1002/adom.202300147

Performance of blue solution‐processed perovskite light‐emitting diodes (LEDs) is limited by availability of blue perovskite materials. Herein, 4‐(trifluoromethyl)benzoyl ammonium bromide (4‐TMBABr) is used with abundant N H and C O groups to passiva... Read More about Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes.

Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites (2023)
Journal Article
Fan, M., Huang, J., Turyanska, L., Bian, Z., Wang, L., Xu, C., …Yang, X. (2023). Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites. Advanced Functional Materials, 33(19), Article 2215032. https://doi.org/10.1002/adfm.202215032

Metal halide perovskite quantum dots (QDs) have emerged as potential materials for high brightness, wide color gamut, and cost-effective backlight emission due to their high photoluminescence quantum yields, narrow emission linewidths, and tunable ba... Read More about Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites.

Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications (2023)
Journal Article
Bai, B., Zhang, C., Dou, Y., Kong, L., Wang, S., Li, J., …Jia, G. (2023). Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews, 52(4), 1519. https://doi.org/10.1039/d3cs90022c

Correction for ‘Atomically flat semiconductor nanoplatelets for light-emitting applications’ by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318–360, https://doi.org/10.1039/D2CS00130F. The authors regret that there was an error in the spelling of... Read More about Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., …Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Atomically flat semiconductor nanoplatelets for light-emitting applications (2022)
Journal Article
Bai, B., Zhang, C., Dou, Y., Kong, L., Wang, L., Wang, S., …Jia, G. (2023). Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews, 52(1), 318-360. https://doi.org/10.1039/d2cs00130f

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applic... Read More about Atomically flat semiconductor nanoplatelets for light-emitting applications.

Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors (2022)
Journal Article
Cottam, N. D., Austin, J. S., Zhang, C., Patanè, A., Escoffier, W., Goiran, M., …Makarovsky, O. (2023). Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors. Advanced Electronic Materials, 9(2), Article 2200995. https://doi.org/10.1002/aelm.202200995

Stable all-inorganic CsPbX3 perovskite nanocrystals (PNCs) with high optical yield can be used in combination with graphene as photon sensors with high responsivity (up to 106 A W−1) in the VIS-UV range. The performance of these perovskite/graphene f... Read More about Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors.

Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing (2022)
Journal Article
Zhang, C., Chen, J., Turyanska, L., Wang, J., Wang, W., Wang, L., …Yang, X. (2023). Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing. Advanced Functional Materials, 33(3), Article 2211466. https://doi.org/10.1002/adfm.202211466

Self-assembly of nanocrystals into controlled structures while uncompromising their properties is one of the key steps in optoelectronic device fabrication. Herein, zigzag CsPbBr3 perovskite nanocrystals are demonstrated with a precise number of comp... Read More about Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing.

A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs (2022)
Journal Article
Kong, L., Luo, Y., Turyanska, L., Zhang, T., Zhang, Z., Xing, G., …Yang, X. (2022). A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs. Advanced Functional Materials, Article 2209186. https://doi.org/10.1002/adfm.202209186

Quasi‐2D Ruddlesden‐Popper perovskites receive tremendous attention for application in light‐emitting diodes (LEDs). However, the role of organic ammonium spacers on perovskite film has not been fully‐understood. Herein, a spacer cation assisted pero... Read More about A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D. H., Lim, K. H., Kam, T. S., Turyanska, L., & Bradshaw, T. D. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 7(25), 21473–21482. https://doi.org/10.1021/acsomega.2c00997

The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI 50 < 0.38 μM), targeting mic... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D.-H., Lim, K.-H., …Bradshaw, T. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 7(25), 21473-21482. https://doi.org/10.1021/acsomega.2c00997

he O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 μM), targeting micro... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology (2021)
Journal Article
Kuruppu, A. I., Turyanska, L., Bradshaw, T. D., Manickam, S., Galhena, B. P., Paranagama, P., & De Silva, R. (2022). Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. BBA - General Subjects, 1866(2), Article 130067. https://doi.org/10.1016/j.bbagen.2021.130067

Background: The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it d... Read More about Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology.

Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure (2021)
Journal Article
Kong, L., Wu, J., Li, Y., Cao, F., Wang, F., Wu, Q., …Yang, X. (2022). Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Science Bulletin, 67(5), 529-536. https://doi.org/10.1016/j.scib.2021.12.013

Emerging quantum dots (QDs) based light-emitting field-effect transistors (QLEFETs) could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost. Considerable efforts have b... Read More about Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure.