Skip to main content

Research Repository

Advanced Search

All Outputs (11)

Molecular characterisation of defence of Brassica napus (Oilseed rape) to Rhizoctonia solani AG2-1 confirmed by functional analysis in Arabidopsis thaliana (2023)
Journal Article
Sims, I., Jayaweera, D., Swarup, K., & Ray, R. V. (2023). Molecular characterisation of defence of Brassica napus (Oilseed rape) to Rhizoctonia solani AG2-1 confirmed by functional analysis in Arabidopsis thaliana. Phytopathology, 113(8), 1525-1536. https://doi.org/10.1094/PHYTO-08-22-0305-R

Rhizoctonia solani is a necrotrophic, soilborne fungal pathogen associated with significant establishment losses in Brassica napus (oilseed rape; OSR). The anastomosis group (AG) 2-1 of R. solani is the most virulent to OSR, causing damping-off, root... Read More about Molecular characterisation of defence of Brassica napus (Oilseed rape) to Rhizoctonia solani AG2-1 confirmed by functional analysis in Arabidopsis thaliana.

Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis (2022)
Journal Article
De Pessemier, J., Moturu, T. R., Nacry, P., Ebert, R., De Gernier, H., Tillard, P., …Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73(11), 3569-3583

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treat... Read More about Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis.

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. (2018)
Journal Article
Voß, U., Wilson, M. H., Kenobi, K., Gould, P. D., Robertson, F. C., Peer, W. A., Lucas, M., Swarup, K., Casimiro, I., Holman, T. J., Wells, D. M., Péret, B., Goh, T., Fukaki, H., Hodgman, T. C., Laplaze, L., Halliday, K. J., Ljung, K., Murphy, A. S., Hall, A. J., …Bennett, M. J. (2018). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, https://doi.org/10.17863/CAM.26324

Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)) (2018)
Journal Article
Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., …Swarup, R. (2018). Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)). Nature Communications, 9(1), 1818. https://doi.org/10.1038/s41467-018-04281-x

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.

Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein (2017)
Journal Article
Hunt, L., Amsbury, S., Baillie, A., Movahedi, M., Mitchell, A., Afsharinafar, M., …Gray, J. E. (2017). Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiology, 174(2), https://doi.org/10.1104/pp.16.01715

Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterised FOCL1, a guard cell-expresse... Read More about Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., …Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor (2016)
Journal Article
Goh, T., Toyokura, K., Wells, D. M., Swarup, K., Yamamoto, M., Mimura, T., …Guyomarc'h, S. (2016). Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development, 143(18), 3363-3371. https://doi.org/10.1242/dev.135319

Lateral root (LR) formation is an important determinant of root system architecture. In Arabidopsis, LRs originate from pericycle cells, which undergo a programme of morphogenesis to generate a new LR meristem. Despite its importance for root meriste... Read More about Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana (2015)
Journal Article
Voß, U., Wilson, M. H., Kenobi, K., Gould, P. D., Robertson, F. C., Peer, W. A., …Bennett, M. J. (2015). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 6, Article 7641. https://doi.org/10.1038/ncomms8641

The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence.... Read More about The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana.

Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues (2013)
Journal Article
Lucas, M., Kenobi, K., Von Wangenheim, D., Voß, U., Swarup, K., De Smet, I., …Bennett, M. J. (2013). Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences, 110(13), 5229-5234. https://doi.org/10.1073/pnas.1210807110

In Arabidopsis, lateral root primordia (LRPs) originate from pericycle cells located deep within the parental root and have to emerge through endodermal, cortical, and epidermal tissues. These overlaying tissues place biomechanical constraints on the... Read More about Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues.