Skip to main content

Research Repository

Advanced Search

All Outputs (10)

An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins (2021)
Journal Article

Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotroph... Read More about An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins.

Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation (2021)
Journal Article

Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to unders... Read More about Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation.

Site‐Selective Installation of Nϵ ‐Modified Sidechains into Peptide and Protein Scaffolds via Visible‐Light‐Mediated Desulfurative C–C Bond Formation (2021)
Journal Article

Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to unders... Read More about Site‐Selective Installation of Nϵ ‐Modified Sidechains into Peptide and Protein Scaffolds via Visible‐Light‐Mediated Desulfurative C–C Bond Formation.

Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions (2016)
Journal Article
Manzi, L., Barrow, A. S., Scott, D., Layfield, R., Wright, T. G., Moses, J. E., & Oldham, N. J. (2016). Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions. Nature Communications, 7, Article 13288. https://doi.org/10.1038/ncomms13288

Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods th... Read More about Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions.

Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin (2016)
Journal Article
Scott, D., Garner, T. P., Long, J., Strachan, J., Mistry, S. C., Bottrill, A. R., …Layfield, R. (in press). Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin. Proteomics, 16(14), https://doi.org/10.1002/pmic.201600067

Unanchored polyubiquitin chains are emerging as importanregulators of cellular physiology with diverse roles paralleling those of substrate-conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isop... Read More about Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin.

Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5 (2015)
Journal Article
Scott, D., Layfield, R., & Oldham, N. J. (2015). Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5. Proteomics, 15(16), https://doi.org/10.1002/pmic.201400457

Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM–MS),... Read More about Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5.