Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing (2022)
Journal Article
Latif, A., Fisher, L. E., Dundas, A. A., Crucitti, V. C., Imir, Z., Lawler, K., Pappalard, F., Muir, B. W., Wildman, R., Irvine, D. J., Alexander, M. R., & Ghaemmaghami, A. M. (2024). Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing. Advanced Materials, 36(43), Article 2208364. https://doi.org/10.1002/adma.202208364

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involv... Read More about Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing.

Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods (2021)
Journal Article
Cuzzucoli Crucitti, V., Contreas, L., Taresco, V., Howard, S. C., Dundas, A. A., Limo, M. J., …Irvine, D. J. (2021). Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials and Interfaces, 13(36), 43290-43300. https://doi.org/10.1021/acsami.1c08662

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimens... Read More about Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.