Mohammad Akhtar
Mirror symmetry and the classification of orbifold del Pezzo surfaces
Akhtar, Mohammad; Coates, Tom; Corti, Alessio; Heuberger, Liana; Kasprzyk, Alexander M.; Oneto, Alessandro; Petracci, Andrea; Prince, Thomas; Tveiten, Ketil
Authors
Tom Coates
Alessio Corti
Liana Heuberger
Alexander M. Kasprzyk
Alessandro Oneto
Andrea Petracci
Thomas Prince
Ketil Tveiten
Abstract
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces.
Citation
Akhtar, M., Coates, T., Corti, A., Heuberger, L., Kasprzyk, A. M., Oneto, A., Petracci, A., Prince, T., & Tveiten, K. (2016). Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proceedings of the American Mathematical Society, 144(2), 513-527. https://doi.org/10.1090/proc/12876
Journal Article Type | Article |
---|---|
Publication Date | Feb 1, 2016 |
Deposit Date | Dec 14, 2015 |
Publicly Available Date | Feb 1, 2016 |
Journal | Proceedings of the American Mathematical Society |
Print ISSN | 0002-9939 |
Electronic ISSN | 1088-6826 |
Publisher | American Mathematical Society |
Peer Reviewed | Peer Reviewed |
Volume | 144 |
Issue | 2 |
Pages | 513-527 |
DOI | https://doi.org/10.1090/proc/12876 |
Public URL | https://nottingham-repository.worktribe.com/output/978198 |
Publisher URL | http://dx.doi.org/10.1090/proc/12876 |
Related Public URLs | http://www.ams.org/publications/journals/journalsframework/proc |
Additional Information | First published in Proceedings of the American Mathematical Society in v. 144, no. 2, published by the American Mathematical Society. |
Files
1501.05334.pdf
(250 Kb)
PDF
You might also like
Polytopes and machine learning
(2023)
Journal Article
Machine learning detects terminal singularities
(2023)
Presentation / Conference Contribution
Machine learning the dimension of a Fano variety
(2023)
Journal Article
Machine Learning: The Dimension of a Polytope
(2023)
Book Chapter
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search