Jian-Hua Zhang
Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M.; Groumpos, Petros P.; Wang, Ru-Bin
Authors
Jia-Jun Xia
Professor JONATHAN GARIBALDI JON.GARIBALDI@NOTTINGHAM.AC.UK
Provost and PVC UNNC
Petros P. Groumpos
Ru-Bin Wang
Abstract
Background and objective: In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable.
Methods: Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy.
Results: Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%).
Conclusion: The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller.
Citation
Zhang, J.-H., Xia, J.-J., Garibaldi, J. M., Groumpos, P. P., & Wang, R.-B. (2017). Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets. Computer Methods and Programs in Biomedicine, 144, https://doi.org/10.1016/j.cmpb.2017.03.016
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 17, 2017 |
Online Publication Date | Mar 21, 2017 |
Publication Date | Jun 1, 2017 |
Deposit Date | Aug 2, 2017 |
Publicly Available Date | Aug 2, 2017 |
Journal | Computer Methods and Programs in Biomedicine |
Print ISSN | 0169-2607 |
Electronic ISSN | 1872-7565 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 144 |
DOI | https://doi.org/10.1016/j.cmpb.2017.03.016 |
Keywords | Man-machine system, Fuzzy inference petri net, Operator functional state, Human performance, Adaptive functional allocation, Electroencephalography |
Public URL | https://nottingham-repository.worktribe.com/output/968946 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0169260716303546?via%3Dihub |
Contract Date | Aug 2, 2017 |
Files
CMPB-Zhang.pdf
(3.6 Mb)
PDF
You might also like
Explain the world – Using causality to facilitate better rules for fuzzy systems
(2024)
Journal Article
Gradient-based Fuzzy System Optimisation via Automatic Differentiation – FuzzyR as a Use Case
(2024)
Preprint / Working Paper
A pattern-based algorithm with fuzzy logic bin selector for online bin packing problem
(2024)
Journal Article
Boundary-wise loss for medical image segmentation based on fuzzy rough sets
(2024)
Journal Article
Towards Causal Fuzzy System Rules Using Causal Direction
(2023)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search