Skip to main content

Research Repository

Advanced Search

Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

Authors

Ross E. Hart

Steven P. Bamford

Wayne B. Hayes

Carolin N. Cardamone

William C. Keel

Sandor J. Kruk

Chris J. Lintott

Karen L. Masters

Brooke D. Simmons

Rebecca J. Smethurst



Abstract

In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm sparcfire to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

Citation

Hart, R. E., Bamford, S. P., Hayes, W. B., Cardamone, C. N., Keel, W. C., Kruk, S. J., …Smethurst, R. J. (2017). Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles. Monthly Notices of the Royal Astronomical Society, 472(2), 2263-2279. https://doi.org/10.1093/mnras/stx2137

Journal Article Type Article
Acceptance Date Aug 15, 2017
Online Publication Date Aug 22, 2017
Publication Date Dec 1, 2017
Deposit Date Oct 2, 2017
Publicly Available Date Oct 2, 2017
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 472
Issue 2
Pages 2263-2279
DOI https://doi.org/10.1093/mnras/stx2137
Keywords methods: data analysis – galaxies: general – galaxies: spiral – galaxies: structure
Public URL https://nottingham-repository.worktribe.com/output/964467
Publisher URL https://academic.oup.com/mnras/article/472/2/2263/4091436/Galaxy-Zoo-and-sparcfire-constraints-on-spiral-arm
Additional Information This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Files





You might also like



Downloadable Citations