Elena Armenise
Soil seal development under simulated rainfall: structural, physical and hydrological dynamics
Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doen, Stefan H.; Mooney, Sacha J.; Sturrock, Craig; Ritz, Karl
Authors
Robert W. Simmons
Sujung Ahn
Amin Garbout
Stefan H. Doen
Professor SACHA MOONEY sacha.mooney@nottingham.ac.uk
PROFESSOR OF SOIL PHYSICS
Dr CRAIG STURROCK craig.sturrock@nottingham.ac.uk
PRINCIPAL RESEARCH FELLOW
Karl Ritz
Abstract
This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 minutes). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 - 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24 - 0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 minutes rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.
Citation
Armenise, E., Simmons, R. W., Ahn, S., Garbout, A., Doen, S. H., Mooney, S. J., Sturrock, C., & Ritz, K. (2018). Soil seal development under simulated rainfall: structural, physical and hydrological dynamics. Journal of Hydrology, 556, https://doi.org/10.1016/j.jhydrol.2017.10.073
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 29, 2017 |
Online Publication Date | Nov 1, 2017 |
Publication Date | Jan 1, 2018 |
Deposit Date | Nov 14, 2017 |
Publicly Available Date | Nov 14, 2017 |
Journal | Journal of Hydrology |
Print ISSN | 0022-1694 |
Electronic ISSN | 1879-2707 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 556 |
DOI | https://doi.org/10.1016/j.jhydrol.2017.10.073 |
Keywords | Soil structural seal; Seal/crust thickness quantification; Xray Computed Tomography (CT); Unsaturated hydraulic conductivity (Kun); Soil water repellency; Simulated rainfall |
Public URL | https://nottingham-repository.worktribe.com/output/963149 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0022169417307497 |
Contract Date | Nov 14, 2017 |
Files
1-s2.0-S0022169417307497-main.pdf
(725 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
Root-soil-microbiome management is key to the success of Regenerative Agriculture
(2024)
Journal Article
Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search