Cong Qi
Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems
Qi, Cong; Wang, Guiqing; Yan, Yuying; Mei, Siyuan; Luo, Tao
Authors
Guiqing Wang
Professor YUYING YAN YUYING.YAN@NOTTINGHAM.AC.UK
PROFESSOR OF THERMOFLUIDS ENGINEERING
Siyuan Mei
Tao Luo
Abstract
Stable TiO2-H2O nanofluids are prepared and their stabilities are studied. An experimental set for studying the heat transfer and flow characteristics of nanofluids is established. Heat transfer and flow characteristics of TiO2-H2O nanofluids in a circular tube with rotating and static built-in twisted tapes are experimentally investigated and compared. An innovative performance evaluation plot of exergy efficiency is developed and the exergy efficiency of tube with rotating and static built-in twisted tapes filled with nanofluids is analyzed in this paper. The results indicate that the combination of rotating built-in twisted tape and TiO2-H2O nanofluids shows an excellent enhancement in heat transfer, which can increase the heat transfer by 101.6% compared with that of in a circular tube. The effects of nanoparticle mass fractions (ω= 0.1%, 0.3% and 0.5%) and Reynolds numbers (Re = 600–7000) on the heat transfer and flow characteristics of TiO2-H2O nanofluids are discussed. It is found that there is a critical Reynolds number (Re = 4500) for the maximum value of relative heat transfer enhancement ratio. The comprehensive performance of the experimental system is analyzed. It can be found that the comprehensive performance index of the experimental system firstly increases and then reduces with Reynolds number, and it can reach 1.519 at best. However, for the performance evaluation of exergy efficiency, the coupling of rotating twisted tape and nanofluids deteriorates the exergy efficiency. Also, it can be found that the exergy efficiency of the circular tube with twisted tape is greater than that of circular tube under the same pumping power and pressure drop, but it shows deterioration under the same mass flow rate.
Citation
Qi, C., Wang, G., Yan, Y., Mei, S., & Luo, T. (2018). Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems. Energy Conversion and Management, 166, https://doi.org/10.1016/j.enconman.2018.04.086
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 22, 2018 |
Online Publication Date | May 3, 2018 |
Publication Date | Jun 15, 2018 |
Deposit Date | May 8, 2018 |
Publicly Available Date | May 4, 2019 |
Journal | Energy Conversion and Management |
Print ISSN | 0196-8904 |
Electronic ISSN | 2590-1745 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 166 |
DOI | https://doi.org/10.1016/j.enconman.2018.04.086 |
Keywords | Nanofluids; Rotating twisted tape; Heat transfer enhancement; Nanoparticle mass fraction; Exergy efficiency |
Public URL | https://nottingham-repository.worktribe.com/output/938681 |
Publisher URL | https://doi.org/10.1016/j.enconman.2018.04.086 |
Contract Date | May 8, 2018 |
Files
Paper in Energy conversion and management.pdf
(1.6 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
Effect of loaded carbon-based nanoparticles on the evaporation dynamics of sessile droplets
(2024)
Journal Article
Performance investigation and optimization of an L-type thermoelectric generator
(2024)
Journal Article
Numerical Study on Thermal Storage-Discharge Process of Envelopes in Building Heating Systems With Different Terminals
(2024)
Presentation / Conference Contribution
Emissions of volatile organic compounds from reed diffusers in indoor environments
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search