Skip to main content

Research Repository

Advanced Search

A tripartite filter design for seamless pedestrian navigation using recursive 2-means clustering and Tukey update


Pekka Peltola

Jialin Xiao

Chris Hill

Terry Moore

Fernando Seco

Antonio R.


Mobile devices are desired to guide users seamlessly to diverse destinations indoors and outdoors. The positioning fixing subsystems often provide poor quality measurements with gaps in an urban environment. No single position fixing technology works continuously. Many sensor fusion variations have been previously trialed to overcome this challenge, including the particle filter that is robust and the Kalman filter which is fast. However, a lack exists, of context aware, seamless systems that are able to use the most fit sensors and methods in the correct context. A novel adaptive and modular tripartite navigation filter design is presented to enable seamless navigation. It consists of a sensor subsystem, a context inference and a navigation filter blocks. A foot-mounted inertial measurement unit (IMU), a Global Navigation Satellite System (GNSS) receiver, Bluetooth Low Energy (BLE) and Ultrawideband (UWB) positioning systems were used in the evaluation implementation of this design. A novel recursive 2-means clustering method was developed to track multiple hypotheses when there are gaps in position fixes. The closest hypothesis to a new position fix is selected when the gap ends. Moreover, when the position fix quality measure is not reliable, a fusion approach using a Tukey-style particle filter measurement update is introduced. Results show the successful operation of the design implementation. The Tukey update improves accuracy by 5% and together with the clustering method the system robustness is enhanced.


Peltola, P., Xiao, J., Hill, C., Moore, T., Seco, F., & Jiménez, A. R. (in press). A tripartite filter design for seamless pedestrian navigation using recursive 2-means clustering and Tukey update.

Conference Name IEEE/ION PLANS 2018
End Date Apr 26, 2018
Acceptance Date Nov 17, 2017
Online Publication Date Jun 7, 2018
Deposit Date May 16, 2018
Publicly Available Date Jun 7, 2018
Peer Reviewed Peer Reviewed
Keywords tripartite; modular; pedestrian navigation; Kalman;
particle; filter; clustering; Tukey; adaptive
Public URL
Publisher URL
Related Public URLs
Additional Information © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

To be published in Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS)


You might also like

Downloadable Citations