Dr RACHEL NICKS Rachel.Nicks@nottingham.ac.uk
ASSISTANT PROFESSOR
Clusters in nonsmooth oscillator networks
Nicks, Rachel; Chambon, Lucie; Coombes, Stephen
Authors
Lucie Chambon
Professor Stephen Coombes STEPHEN.COOMBES@NOTTINGHAM.AC.UK
PROFESSOR OF APPLIED MATHEMATICS
Abstract
© 2018 American Physical Society. For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in biology, physics, and engineering that can be described by PWL oscillators.
Citation
Nicks, R., Chambon, L., & Coombes, S. (2018). Clusters in nonsmooth oscillator networks. Physical Review E, 97(3), Article 032213. https://doi.org/10.1103/PhysRevE.97.032213
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 6, 2018 |
Online Publication Date | Mar 23, 2018 |
Publication Date | Mar 23, 2018 |
Deposit Date | Mar 12, 2018 |
Publicly Available Date | Mar 23, 2018 |
Journal | Physical Review E |
Print ISSN | 2470-0045 |
Electronic ISSN | 2470-0053 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 97 |
Issue | 3 |
Article Number | 032213 |
DOI | https://doi.org/10.1103/PhysRevE.97.032213 |
Keywords | Master Stability Function, Oscillator networks, Nonsmooth dynamics, Group theory |
Public URL | https://nottingham-repository.worktribe.com/output/921547 |
Publisher URL | https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.032213 |
Additional Information | Nicks, R.; Chambon L.; Coombes, S. Clusters in nonsmooth oscillator networks. Physical Review E. 2018 Mar 23; 97(3): 032213 doi:10.1103/PhysRevE.97.032213 |
Contract Date | Mar 12, 2018 |
Files
Clusters
(6 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf
You might also like
Oscillatory networks: insights from piecewise-linear modelling
(2024)
Journal Article
Phase and amplitude responses for delay equations using harmonic balance
(2024)
Journal Article
Stability analysis of electrical microgrids and their control systems
(2024)
Journal Article
Insights into oscillator network dynamics using a phase-isostable framework
(2024)
Journal Article
Understanding the effect of white matter delays on large scale brain synchrony
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search