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For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a
particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this
approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations
require the determination of a set of Floquet multipliers from variational equations obtained by linearization around
a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework
is often explored using numerical techniques. Here, we show that further insight into network dynamics can
be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit
construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting
such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear
stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally
accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth
dynamical systems with such matrices we show that, for a wide variety of networks that have been used as
models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an
integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network
built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these
examples to emphasize that the stability of network cluster states can depend as much on the choice of single node
dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present
here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in biology,
physics, and engineering that can be described by PWL oscillators.
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I. INTRODUCTION

The study of synchrony in coupled oscillator networks
has a very long history, dating all the way back to the work
of Huygens on two interacting pendulum clocks. Since his
observations about the emergence of “an odd kind of sympa-
thy,” there have been countless other examples of synchrony
discussed in the natural sciences and engineering ranging from
the dynamics of populations of flashing fireflies to those of cou-
pled Josephson junctions. For an excellent review, see Arenas
et al. [1] and the recent focus issue on patterns of network
synchronization [2]. However, perfect global synchronization
is just one of many states expected to emerge in structured
oscillator networks. Indeed, instabilities of the synchronous
state are generically expected to give rise to cluster states, in
which subpopulations may synchronize, though not with each
other. This class of solutions has been relatively well explored
for phase-oscillator networks, as in the work by Brown et al.
[3] and Ashwin et al. [4], though less so for networks of limit-
cycle oscillators. For this more general scenario, Golubitsky
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and Stewart have made use of the Hopf bifurcation with
symmetry to understand cluster states in ring networks, and
provided a number of case studies of systems with nearest-
neighbor coupling [5]. Pogromsky and collaborators have also
exploited symmetry under permutation of a given network of
dynamical systems coupled through diffusion to determine
the stability of cluster states, with the aid of an appropriate
Lyapunov function [6,7]. For the case of diffusively coupled
oscillators, Belykh et al. have further provided a complete
classification of cluster states, together with conditions that
can be used to determine the coexistence of stable cluster
states with an unstable synchronous state [8]. More recently,
Pecora et al. [9] and Sorrentino et al. [10] have extended the
master stability function (MSF) approach of Pecora and Carroll
[11] making extensive use of tools from computational group
theory. This work paves the way for a systematic study of
cluster states and their bifurcations for a very broad class of
networks with state-dependent interactions, including arrays of
electrochemical oscillators [12], gene networks [13], and the
brain [14]. Moreover, it will likely play a key role in addressing
the growing interest in dynamics on networks [15].

At heart the MSF approach exploits the fact that the
Floquet theory for the stability of a synchronous network state
decouples into a set of lower dimensional Floquet problems. By
studying just one of these lower dimensional Floquet problems,
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as a function of a single complex parameter, the linear stability
of the synchronous network state can be determined. Indeed,
the approach is sufficiently general that, for Laplacian coupling
of identical nodes (so that the network synchronous state is
guaranteed to exist as long as a single node oscillates), then
the effect of different network choices is easily explored.
Namely, for a given choice of node dynamics, the MSF maps a
complex number to the largest Floquet exponent of the reduced
problem, and by choosing the complex number to run over all
possible eigenvalues of the unnormalized graph Laplacian of
the network connectivity, then stability is guaranteed if the
MSF is always negative. The challenge of exploring different
networks thus reduces to determining the eigenstructure of the
graph Laplacian, with the caveat that the Floquet problem can
be solved. However, for a general nonlinear system (without
special structure) it is unlikely that this problem can be solved
analytically. Thus, it would be highly complementary to the
MSF formalism, and its extensions to treat cluster states, if
this barrier could be reduced or removed entirely. It is this issue
that we address in this paper. We do so by restricting the choice
of node dynamics to that of piecewise linear (PWL) systems.
Although at first sight this may appear overly restrictive, there
has been an appreciation for some time in the mathematical
community of the benefits of studying caricatures of complex
systems built from PWL and possibly discontinuous dynamical
systems [16]. Indeed, there is a now growing perspective in the
applied dynamical systems community that piecewise models
are highly suitable for modern applications in science and can
complement the smooth dynamical systems approach that has
dominated to date [17]. It has recently been shown how to
extend the MSF formalism for synchrony to PWL models with
state-dependent coupling [18]. Here, we go further and show
how to treat discontinuous systems of integrate-and-fire (IF)
type, and how to analyze the existence and stability of more
general cluster states in a broad class of PWL network models
with both state- and time-dependent interactions.

In Sec. II we give a brief recapitulation of the MSF for
smooth dynamical systems as well as its extension to networks
of nodes built from PWL oscillators. In illustration of the utility
of this combination of MSF and nonsmooth systems, we show
how to analyze synchrony in PWL IF networks with balanced
synaptic coupling. Next, in Sec. III we survey the techniques
from computational group theory that allow the discovery
of cluster states from the topology of the network. For PWL
systems we then show, in Sec. IV, how such orbits can be
explicitly determined. Similarly, the variational equations that
determine the stability of a cluster state are equally tractable.
By exploiting the PWL nature of the network dynamics we
are able to determine the stability of cluster states without
recourse to numerically evolving the variational equations.
Our approach also facilitates an explicit bifurcation analysis,
which we illustrate for a simple five-node network with a PWL
analog of a Hopf normal form. In Sec. V we further explore
a node dynamics that exhibits a PWL analog of a homoclinic
bifurcation, as well as a PWL IF model. We use these examples
to highlight that the stability of network cluster states can
depend as much on the choice of single node dynamics as it
does on the form of network structural connectivity. Finally,
in Sec. VI we discuss natural extensions of the work in this
paper.

II. MASTER STABILITY FUNCTION:
A RECAPITULATION

The MSF allows the determination of the linear stability
of the synchronous state in a quite large class of smooth
networks of identical nodes. To describe the MSF formalism, it
is convenient to consider N nodes (oscillators) and let xi ∈ Rm

be the m-dimensional vector of dynamical variables of the
ith node with isolated (uncoupled) dynamics ẋi = F(xi), with
i = 1, . . . ,N . The output for each oscillator is described by
a vector function H ∈ Rm. For a given coupling matrix with
components Wij and a global coupling strength σ the network
dynamics, to which the MSF formalism applies, is specified
by

d

dt
xi = F(xi) + σ

N∑
j=1

Wij [H(xj ) − H(xi)]

≡ F(xi) − σ

N∑
j=1

Gij H(xj ). (1)

Here, the matrix G with components Gij has the unnormal-
ized graph Laplacian structure Gij = −Wij + δij

∑
k Wik . The

N − 1 constraints x1(t) = x2(t) = · · · = xN (t) = s(t) define
the (invariant) synchronization manifold, with s(t) a solution
of the uncoupled system, namely ṡ = F(s). To assess the
stability of this state, a linear stability analysis is performed
by expanding a solution as xi(t) = s(t) + δxi(t) to obtain the
variational equation

d

dt
δxi = DF(s)δxi − σDH(s)

N∑
j=1

Gij δxj .

Here, DF(s) and DH(s) denote the Jacobian of F(s) and H(s)
around the synchronous solution, respectively. The variational
equation has a block form that can be simplified by projecting
δx into the eigenspace spanned by the (right) eigenvectors
of the matrix G. If we organize these column eigenvectors
into a matrix P then GP = P�, with � = diag(λ1, . . . ,λN ),
where λl are the corresponding eigenvalues for l = 1, . . . ,N . If
we collect the perturbations in a vector U = (δx1, . . . ,δxN ) ∈
RNm, and introduce a new variable V according to the linear
transformation V = (P ⊗ Im)−1U, then we have that

d

dt
V = [IN ⊗ DF(s)]V − σ [� ⊗ DH(s)]V. (2)

Here, the symbol ⊗ denotes the tensor (or Kronecker) product
for matrices, and IN is the N × N identity matrix. Thus, we
have a set of N decoupled eigenmodes in the block form

d

dt
ξl = [DF(s) − σλlDH(s)]ξl, l = 1, . . . ,N

where ξl is the lth (right) eigenmode associated with the
eigenvalue λl of G [and DF(s) and DH(s) are independent
of the block label l]. Since

∑
j Gij = 0 there is always a

zero eigenvalue, say λ1 = 0, with corresponding eigenvector
(1,1, . . . ,1), describing a perturbation parallel to the synchro-
nization manifold. The other N − 1 transverse eigenmodes
must damp out for synchrony to be stable. For a general matrix
G, the eigenvalues λl may be complex, which brings us to
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consideration of the system

d

dt
ξ = [DF(s) − βDH(s)]ξ, β = σλl ∈ C (3)

where ξ ∈ Cm. The MSF is defined as the function which maps
the complex number β to the largest Floquet exponent of (3).
The synchronous state of the system of coupled oscillators is
stable if the MSF is negative at β = σλl where λl ranges over
the eigenvalues of the matrix G (excluding λ1 = 0).

We note that the Laplacian form of coupling in (1) guaran-
tees the existence of the synchronous state as long as a single
uncoupled node has a periodic solution. However, other forms
of coupling, and in particular those described by adjacency
matrices or their weighted counterparts, are also common. In
this case, (1) would be replaced by the system

d

dt
xi = F(xi) + σ

N∑
j=1

Wij H(xj ). (4)

The synchronous solution (with an orbit inherited from the
uncoupled node) is not a generic solution of (4) unless there
is a further constraint placed on the coupling matrix, namely,
that

∑N
j=1 Wij = const for all i. If this constant value is 0,

then we shall say that the system is balanced. This scenario is
ubiquitous in the modeling of many spiking neural networks
[19], and is relevant to understanding coding [20], memory
[21], noise-robust neuronal selectivity [22], and brain idling
[23]. Interestingly, many spiking neural networks are modeled
using integrate-and-fire (IF) neurons which are discontinuous
dynamical systems owing to the hard reset of the voltage
state variable upon reaching a spiking threshold [24]. A naive
application of the MSF formalism described above would
lead to incorrect results since it assumes that the underlying
dynamics is smooth. Fortunately, it is relatively straightforward
to augment the MSF approach to handle firing discontinuities
in IF networks using ideas from the study of impact oscillators.
This was originally done by Coombes to give meaning to
Lyapunov exponents for linear IF neurons [25], and more
recently by Ladenbauer et al. [26] for constructing the MSF in
synaptically coupled networks of nonlinear (adaptive exponen-
tial) IF neurons. However, this latter work requires substantial
numerical simulation as the periodic orbit for the synchronous
solution is not available in closed form. The perspective in
this paper is to choose PWL caricatures of node dynamics to
overcome this last barrier. A case in point is the caricature of
the adaptive exponential IF model developed in [27], which
has a PWL subthreshold dynamics and an adaptive jump upon
reset. Since this is an exemplar PWL system, we will describe
it here in more detail to set the scene for the extension of the
MSF formalism to cover nonsmooth systems in general and
not just IF type models. For a further perspective on the use of
techniques from nonsmooth systems in neuroscience, see [24].

A. MSF for PWL IF networks with synaptic coupling

There are now many variants on nonlinear integrate-and-fire
neurons that are able to fit the spike trains of real neurons,
such as those due to Gröbler et al. [28], Izhikevich [29], and
Badel et al. [30]. The planar adaptive exponential model has
been particularly successful at fitting data from cortical fast

spiking interneurons and regular spiking pyramidal neurons
[30]. Importantly, it admits to a useful PWL reduction whereby
its voltage nullcline is replaced by a PWL function [27]. A
similar approach is taken in [31] to develop an analytically
tractable PWL IF model that can support both tonic (repetitive
firing with a constant interspike interval) and bursting states
(with regular alternations between short and long interspike
intervals). Here, we subsume both models within a general
description of the form ż = F(z), z ∈ Rm, with

F(z) =
{

ALz + cL, z ∈ SL

ARz + cR, z ∈ SR

(5)

with AL,R ∈ Rm×m, cL,R ∈ Rm, and Rm = SL ∪ � ∪ SR . For
simplicity, we restrict attention to the situation that the phase
space of the model can be broken into two regions SL,R

separated by a boundary given implicitly by the zero of an
indicator function h, such that � = {z|h(z) = 0}. It is a simple
matter to break the phase space up into more regions, to
incorporate further switching manifolds, so we shall stick to
describing the simplest situation (though will give examples
in Sec. V of systems with two switching manifolds). Should
the dynamics on the switching manifold not be continuous
with that in regions SL and SR , then it is common to adopt the
Filippov convex method for dynamics on � [32].

For a planar PWL IF model that caricatures the adaptive
exponential IF model we set m = 2, z = (v,w), v � vth, and

AL =
[

aL −1

aw/τ bw/τ

]
, AR =

[
aR −1

aw/τ bw/τ

]
,

with cL = (I,0)T = cR for some constant drive I . The switch-
ing manifold is prescribed by the choice v = 0. Whenever the
voltage variable v reaches the firing threshold vth then the
system is reset according to z → g(z) = (vr,w + κ/τ ). This
gives rise to another type of switching manifold that we shall
refer to as the firing manifold. If we introduce the function
h(z; a) = v − a, then the indicator function for switching is
given by h(z; 0), while that for firing by h(z; vth). From now
on, we shall simply refer to the model described above as
the PWL-IF model. We note that the vector field defining the
PWL-IF model is continuous at v = 0 (so that there is no need
to invoke the Filippov convex method). A set of phase planes of
the model (with nullclines and typical trajectories) for different
parameter choices is shown in Fig. 1. The PWL-IF model is
able to support a tonic firing pattern, which itself is unstable to
a period-doubling bifurcation as seen in the top part of Fig. 1.
It can also support a burst firing pattern, which is unstable to
spike-adding bifurcations as shown in the bottom part of Fig. 1.
Each of the periodic orbits shown in Fig. 1 can be obtained
without recourse to the numerical evolution of the underlying
nonsmooth flow for the PWL-IF model. Rather, the shape
of the orbits can be determined explicitly by exploiting the
linearity of the model between switching and firing manifolds.
In any such region, the model is given by a linear system of
ordinary differential equations (ODEs) of the form ż = Az + c
for appropriate choices of A and c. The explicit solution can be
obtained in terms of initial data using matrix exponentials as

z(t) = eAtz(0) + A−1[eAt − Im]c. (6)
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FIG. 1. Phase plane of the PWL-IF model with vth = 1, vr = 0.2,
aw = 0, bw = −1, aL = −1, aR = 1, I = 0.1. The v-nullcline is in
red (solid line) and the w-nullcline is in magenta (dashed line). Top
left: a tonic firing pattern for κ = 0.75 and τ = 3. Top right: a spike
doublet found for the parameters of tonic firing apart from aw = 0.08.
Bottom left: a burst firing pattern with M = 11 spikes per burst for
κ = 2 and τ = 75. Bottom right: a burst firing pattern with M = 12
spikes per burst for the parameters of the 11-spike burst pattern with
κ = 1.9.

For example, to determine the tonic firing pattern shown
in Fig. 1, which only ever visits the region of phase space
with z ∈ SR we would simply use the formula for (6) with
A = AR and c = cR to determine the time of flight � according
to v(�) = vth with (v(0),w(0)) = (vr,w0), with w0 determined
self-consistently according to w0 = w(�) + κ/τ . The result-
ing pair of nonlinear equations for (�,w0) can in general be
solved with a numerical root finding scheme (and choosing
the solution with the largest value of w0). Thus, although we
can eliminate the need to numerically solve an ODE, there
is still some need for root finding. To determine the burst
patterns shown in Fig. 1, with M spikes per burst, would
require the simultaneous solution of M + 2 equations (one
for the value of w on the switching manifold, and the others
to determine the times of flight between consecutive firing
events, remembering that for this orbit the trajectory also visits
the region SL). However, once the orbit is determined in this
way the Floquet theory for stability simplifies considerably.
To see how this simplification arises, it is enough to focus
on the stability of simple tonic firing pattern. In this case,
the Jacobian of the orbit is the constant matrix AR , and is
independent of the orbit shape. Thus, small perturbations to
the periodic orbit δz(t) can be simply constructed according
to δz(t) = exp(ARt)δz(0). The caveat being that this result
only holds away from switching or firing events. To propagate
perturbations properly through switching and firing manifolds,
we make use of a saltation matrix [33]. A derivation of the
saltation matrix in the context of this paper is given in the
Appendix. Thus, for our nonsmooth system, the evolution
of perturbations to the orbit over one period is given by
δz(�) = �δz(0), where � = K(�) exp(AR�) and K is the
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FIG. 2. A plot of the Floquet exponent r (red solid line) for
the tonic orbit shown in Fig. 1 as a function of aw . Here, we
see that a bifurcation, defined by Re r = 0, occurs as aw increases
through 0.075. The corresponding value of Im r is found to be π/�,
signaling a period-doubling instability (confirmed in direct numerical
simulations). Also shown is the variation of the period � (blue dashed
line) using the right-hand vertical axis.

saltation matrix:

K(t) =
[
v̇(t+)/v̇(t−) 0

[ẇ(t+) − ẇ(t−)]/v̇(t−) 1

]
.

The orbit will be stable provided that the eigenvalues of �

lie within the unit disk. Since one of these will be unity
(reflecting time-translation invariance) we have that the orbit
is stable provided Re r < 0, where the Floquet exponent r can
be calculated explicitly as

r = Tr AR + 1

�
ln

v̇(�+)

v̇(�−)

= aR + bw

τ
+ 1

�
ln

aRvr − w(0) + I

aRvth − w(�) + I
.

Here, we have used the fact that det � = 1 × λ, and defined
the nontrivial eigenvalue λ of � as λ = exp(r�).

In Fig. 2 we show a plot of Re r as a function of the
parameter aw. This predicts the point of a period-doubling
instability, and is found to be in excellent agreement with
direct numerical simulations. The Floquet exponent for more
complicated orbits (that burst and visit both SL and SR) can
also be easily constructed using a revised structure for �. For
example, for a burst pattern with M spikes of the type shown
in Fig. 1 then we would have that

� = K(TM+2)eAL�M+2K(TM+1)eAR�M+1

× K(TM )eAR�M . . . K(T2)eAR�2K(T1)eAR�1 ,

where �i indicate various times of flight, and the Ti the times
at which firing or switching events occur.

We now consider a network of N synaptically coupled
PWL-IF neurons with the introduction of an index i =
1, . . . ,N (labeling each node) and the replacement of the
constant external drive by a time-dependent forcing such that
I → I + σ

∑
j Wij sj (t). Here, the synaptic input from neuron
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j takes the standard event-driven form

sj (t) =
∑
p∈Z

η
(
t − T

p

j

)
,

where T
p

j denotes the pth firing time of neuron j and η

describes the shape of the post-synaptic response. Other forms
of state-dependent synaptic coupling are also possible, such as
the fast threshold modulation type used by Belykh and Hasler
to study clusters in networks of bursting neurons [34], though
would require a further PWL reduction before they could
be studied with the method presented here. For a balanced
network, the existence of the synchronous network state is
independent of any of the parameters describing the synaptic
interaction. This means that the form of synaptic coupling
cannot induce any nonsmooth bifurcations, such as grazing,
which occur if an orbit tangentially touches the firing threshold.
Here, we shall focus on the common choice of a continuous α

function, so that η(t) = α2te−αt�(t), where � is a Heaviside
step function. In this case, we may also write si(t) as the
solution to an impulsively forced linear system:(

1 + 1

α

d

dt

)
si = ui,

(7)(
1 + 1

α

d

dt

)
ui =

∑
p∈Z

δ
(
t − T

p

i

)
.

Exploiting the linearity of the synaptic dynamics between
firing events we may succinctly write the network model in
the form żi = F(zi), where zi = (vi,wi,si,ui), and F has the
form of (5) with

AL,R =

⎡⎢⎢⎢⎣
aL,R −1 0 0

aw/τ bw/τ 0 0

0 0 −α α

0 0 0 −α

⎤⎥⎥⎥⎦,

and cL = (I,0,0,0)T = cR , with zi → g(zi) = (vr,wi +
κ/τ,si,ui + α) whenever h(zi ; vth) = 0. The vector function
that specifies the interaction is given by H(zi) = (si,0,0,0)T.
The MSF approach for a smooth network gives rise to a Floquet
problem with a Jacobian DF(s) + σλlDH(s), where λl is
an eigenvalue of the coupling matrix W . The corresponding
Jacobian for the PWL-IF network is AL,R + σλlDH, with the
label L or R chosen according to whether the synchronous
orbit is in SL or SR . Moreover, DH is now a constant matrix
with [DH]ij = 1 if i = 1 and j = 3, and is 0 otherwise.

The propagation of (linearized) trajectories through a switch
or a firing event is achieved with the use of a saltation matrix
K ∈ Rm×m, and we write this as U+ = (IN ⊗ K)U−, where
U− and U+ are, respectively, the system states just before and
just after the saltation. In transformed coordinates [and see
Eq. (2)] it is simple to establish that V+ = (IN ⊗ K)V−, so
that saltation also acts blockwise with ξ+

l = Kξ−
l . Thus, the

synchronous solution is stable (following the same arguments
as for a single node) if all of the eigenvalues of a set of
matrices �l , l = 1, . . . ,N , lie within the unit disk, excluding
the one that arises from time-translation invariance (with a
value +1). For example, for a synchronous tonic orbit of the

-6

-3

 0

 3

 6

-3 -2 -1  0  1
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FIG. 3. The MSF for a PWL-IF network with a synchronous tonic
orbit. Parameters as in Fig. 1, top left panel. The shaded regions
indicate where MSF < 0 for various values of the synaptic rate
parameter α. The largest region is for α = 0.1, with correspondingly
smaller areas for α = 0.2,0.3,0.4, respectively. The synchronous
solution is stable provided all of the eigenvalues of σW lie within
a shaded area for a given value of α.

type discussed above,

�l = K(�) exp{(AR + σλlDH)�}.
Here, the saltation matrix is given by (and see Appendix)

K(t) =

⎡⎢⎢⎢⎣
v̇(t+)/v̇(t−) 0 0 0

[ẇ(t+) − ẇ(t−)]/v̇(t−) 1 0 0

[ṡ(t+) − ṡ(t−)]/v̇(t−) 0 1 0

[u̇(t+) − u̇(t−)]/v̇(t−) 0 0 1

⎤⎥⎥⎥⎦.

The periodic trajectory for z(t) is subject to the constraints
v(�) = vth, w(0) = w(�) + κ/τ , s(0) = s(�), and u(0) =
u(�) + α. If we denote an eigenvalue of K(�) exp{(AR +
βDH)�}, β ∈ C, by γ (β) then the MSF is the largest number
in the set Re [ln γ (β)]/�, and the synchronous state is stable if
the MSF is negative at all the points where β = σλl . In Fig. 3
we show a plot of the MSF for the synchronous tonic orbit. This
solution will be stable provided all of the eigenvalues of σW

lie within the shaded area shown in Fig. 3 (for a given α). For
a positive semidefinite connectivity matrix then we see from
Fig. 3 that the synchronous solution is unstable for σ > 0.
However, for σ < 0 the same network can support a stable
synchronous orbit for some sufficiently small value of |σ |.

We note here that for the choice of an exponential synapse
as originally considered in [26], with η(t) = αe−αt�(t), then
synaptic interactions are discontinuous and the order in which
perturbed components of the state vector cross the firing
threshold becomes important [35]. In this case, the approach
above, valid only for continuous interactions, must be modified
(although this was not considered in [26]). We shall treat this
mathematically interesting case in another paper.

As a particular realization of a network architecture that
guarantees synchrony, we choose a balanced ring network
with N odd and Wij = W (|i − j |), with distances calculated
modulo (N − 1)/2, and w(x) = (1 − a|x|/d)e−|x|/d . Here, the
parameter a is chosen such that, for a given value of N

and a scale d,
∑N

j=1 Wij = 0. The circulant structure of this
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FIG. 4. Raster plot of spike times from direct numerical simulations of a PWL-IF network with N = 31, d = 3, and α = 0.4. The insets show
a plot of the MSF with the eigenvalues of σW superimposed. Left: σ = −0.1, and synchrony is unstable. Middle: σ = −0.025, and synchrony
is stable. Right: σ = 0.1, and synchrony is unstable. The predicted instability borders (at σ = 0 and σ � −0.05) are in good agreement with
the predictions from the MSF analysis. The typical pattern of firing activity beyond an instability of the synchronous state for σ > 0 is found
to be a periodic traveling wave, while for σ < 0 a spatiotemporal pattern emerges via a period-doubling instability of the firing times.

matrix means that it has normalized eigenvectors given by
el = (1,ωl,ω

2
l , . . . ,w

N−1
l )/

√
N , where l = 0, . . . ,N − 1, and

ωl = exp(2πil/N ) are the N th roots of unity. The eigenvalues
of the (symmetric) connectivity matrix are real and given by

λl =
N−1∑
j=0

W (|j |)ωj

l .

We note that the balance condition enforces λ0 = 0. We also
have that λN−l = λl for l = 1, . . . ,(N − 1)/2, so that any
excited pattern is given by a combination em + e−m = 2 Re em

for some 1 � m � (N − 1)/2. Given the shape of the MSF
function shown in Fig. 3, the value of m is determined by λm =
maxl λl . In Fig. 4 we compare simulations of a network against
the predictions of the MSF. When the network eigenvalues
lie within the region where the MSF is negative, then small
perturbations to synchronous initial data die away and the
system settles to a synchronous periodic orbit as expected.
When one of the eigenvalues crosses the zero level set of the
MSF (from negative to positive), we see two different types of
instability emerge. One is the emergence of a spatiotemporal
pattern of spike doublets, arising because an eigenvalue of �l

leaves the unit disk at −1 (a period-doubling bifurcation),
and another giving rise to periodic traveling wave (with
asynchronous firing) because an eigenvalue of �l leaves the
unit disk at +1 (tangent bifurcation).

III. CLUSTER STATES AND NETWORK STRUCTURE

We now move on to discuss the more general phenomenon
of cluster synchronization, where different groups of oscilla-
tors are exactly synchronized but there is no exact synchrony
between the groups. We focus on networks with symmetry,
where cluster states arise very naturally (although clustering
can also occur in networks without symmetry where syn-
chronous nodes have synchronous input patterns [36]). For
networks of identical oscillators with dynamics described by
(1), a symmetry of the network is a permutation γ of the nodes
which leaves the network equations unchanged. That is, if we
denote x = (x1, . . . ,xN ) ∈ RNm, Mγ the N × N permutation

matrix for the permutation γ and

Gi(x) = F(xi) − σ

N∑
j=1

Gij H(xj ),

then the network dynamics (1) are given by ẋ = G(x) for G =
(G1, . . . ,GN )T where the vector field G satisfies

G((Mγ ⊗ Im)x) = (Mγ ⊗ Im)G(x). (8)

This results in the condition that γ is a symmetry of the network
if MγG = GMγ (or equally Mγ commutes with the connectiv-
ity matrix). The network symmetries form a group � ⊆ SN .
Many real-world networks have been shown to have a high
degree of symmetry, arising from locally treelike structures
produced by natural growth of the network [37]. Determining
symmetries of such large and complex networks is impossible
by inspection. Indeed, even networks with a small number of
nodes can have a large symmetry group [9]. However, the
computations required to determine the symmetry group of
a given network are easily implemented using computational
algebra routines [38,39].

Recent work of Pecora et al. [9] and Sorrentino et al.
[10] has demonstrated how the ideas behind the MSF can be
combined with group theoretical techniques used in the study
of symmetric dynamical systems to analyze the stability of
cluster states within symmetric networks of dynamical units.
The approach taken in [9,10] continues to focus on networks
of coupled identical oscillators whose dynamics is given by
(1). This approach is equivalent to a restriction [to a particular
form of admissible network equations (1) in the special case
of identical oscillators and one type of bidirectional coupling]
of the more general theory of patterns of synchrony in coupled
cell systems developed by Golubitsky and Stewart and col-
laborators and recently reviewed in [36]. Using terminology
from the more general theory, here we review for the particular
network dynamics (1) how network structure can be used to
determine a catalog of possible cluster states. We also discuss
techniques for determining the stability of any given cluster
state, utilizing methods from computational group theory. The
exposition below is inspired by that of [10] and is presented as
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a recipe for how to extend the standard MSF approach to treat
networks of PWL oscillators.

Many of the possible cluster states which a given network
may support arise from the symmetry of the network. We first
describe how these cluster states may be determined before
highlighting the algorithm of Sorrentino et al. [10] which can
be used to determine additional cluster states resulting from
the particular choice of Laplacian coupling.

A. Cluster states from network symmetries

Consider a network of N identical oscillators with one
type of bidirectional coupling whose dynamics is given by (1)
and which has symmetry group �. As a consequence of the
dynamics satisfying the equivariance condition (8), if x(t) is
a solution of (1) (equilibrium or periodic state), then for any
permutation γ ∈ �,

d

dt
γ x = γ

dx
dt

= γ G(x) = G(γ x),

so γ x(t) is also a solution. Here, γ acts on x via the permutation
matrix (Mγ × Im). Thus, solutions occur as group orbits {γ x :
γ ∈ �}. The isotropy subgroup of a solution is the subgroup
� ⊆ � given by

� = {γ ∈ � : γ x(t) = x(t),∀ t ∈ R}.
This is the group of (spatial) symmetries of the solution x(t)
and the largest subgroup of � under which the solution is
invariant. Solutions which lie on the same group orbit have
conjugate isotropy subgroups and the same existence and
stability properties. Given a subgroup � ⊆ � we can define
its fixed-point subspace

Fix(�) = {x : γ x = x, ∀ γ ∈ �}.
Fixed-point subspaces are flow invariant: let γ ∈ � and x ∈
Fix(�). Then,

γ G(x) = G(γ x) = G(x),

so G(x) ∈ Fix(�).
Suppose that � is any subgroup of �. The orbit under �

of the node i is the set {γ (i) : γ ∈ �}. The orbits permute
subsets of nodes among each other and in this way partition the
nodes into clusters. Nodes which lie on the same orbit (in the
same cluster) have synchronized dynamics xγ (i) ≡ xi for any
γ ∈ � (see [36, Thm III.2]). Also, the synchronized state for
each cluster is flow invariant. Thus, to enumerate all possible
synchronized cluster states of a given network which are due
to network symmetries, we need to determine the network
symmetry group � and all of its subgroups. There will be one
type of cluster state for each isotropy subgroup for the action
of � on the node space up to conjugacy.

Example: A five-node network. Consider the example five-
node network studied by Sorrentino et al. [10] which has graph
Laplacian matrix

G =

⎛⎜⎜⎜⎝
3 −1 0 −1 −1

−1 3 −1 0 −1
0 −1 3 −1 −1

−1 0 −1 3 −1
−1 −1 −1 −1 4

⎞⎟⎟⎟⎠. (9)

This network has symmetry group � ∼= D4 generated by the
permutations

ρ = (1234), π = (24).

The conjugacy classes of isotropy subgroups for this network
and corresponding cluster states are given in Table I. Nodes
belonging to the same cluster are the same color. These are
all possible cluster states arising from network symmetries.
Figure 5 shows the lattice of isotropy subgroups (cluster states)
where arrows indicate (up to conjugacy) inclusion of the
symmetries of the cluster state at the tail of the arrow within
the symmetry group of the cluster state at the head of the
arrow. This gives an indication of likely symmetry-breaking
bifurcations between these cluster states. �

Sorrentino et al. [10] provide an algorithm for computing
the subgroups of the network symmetry group � which give
rise to cluster states: suppose that S = {p1, . . . ,pk} is a set
of permutations which generates �. Partition S into subsets
S = S1 ∪ · · · ∪ Sν such that the set of vertices moved by
permutations in Si is disjoint from the set of vertices moved
by permutations in Sj for i �= j , i,j = 1, . . . ν, and each Si

cannot itself be partitioned in this way. If we let Hi denote
the subgroup generated by Si , then we obtain the geometric
decomposition of the group � into the direct product of
subgroups

� = H1 × · · · × Hν

[37]. Note that for each node which is not permuted by
any pi ∈ S, we include a factor of Hi in the geometric
decomposition where Si contains only the identity. Thus, for
the five-node example above � = H1 × H2 where S1 = {ρ,π}
and S2 = {e}. One can use the geometric decomposition to
determine all subgroups of � which may give rise to cluster
states by considering all groups of the type � = K1 × · · · ×
Kν where Ki is a subgroup of Hi . Efficient computational
algebra routines [38,39] are available which will compute the
geometric decomposition and subgroups of a given arbitrary
permutation group, so the computations can be carried out even
for large networks with tens of thousands of nodes [37].

B. Cluster states from Laplacian coupling

In the general theory of patterns of synchrony in coupled cell
systems [36], cluster states correspond to balanced colorings
of the network nodes (where synchronous cells have equivalent
inputs accounting for different types of cells and inputs and also
self-coupling). Networks whose topology does not have any
symmetries can support balanced colorings, while networks
with symmetry can have additional balanced colorings along-
side those which result from symmetry. When we consider
networks with Laplacian coupling dynamics, as in (1), we
expect to see additional potential cluster states resulting from
balanced colorings which arise from the self-coupling. These
additional states will include global synchronization which is
guaranteed to exist in networks of identical oscillators with
Laplacian coupling.

An algorithm for computing these additional potential
cluster states is given in [10] which uses as building blocks the
clusters which can be found from network symmetries. First,
choose an isotropy subgroup � = K1 × · · · × Kν ⊆ �. This
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TABLE I. Cluster states due to symmetry in a network with connectivity given by (9). Network symmetry group � ∼= D4 gives clusters
{1,2,3,4}, {5}. Other potential cluster states are given by isotropy subgroups of �. Conjugate isotropy subgroups (such as the pairs in A2
and A4) give cluster states with identical existence and stability properties. Here, we have used identical labeling for the cluster states to that
given in [10]. We also give for each type of cluster state a corresponding block-diagonalization of the connectivity matrix G ′ = QGQ−1 for an
appropriate transformation matrix Q.

Label Isotropy Cluster state G ′

A1 � ∼= D4

⎛⎜⎜⎜⎜⎝
4 2 0 0 0
2 1 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠

A2 Z2(πρ) ∼= Z2(πρ3)

⎛⎜⎜⎜⎜⎝
4

√
2 −√

2 0 0√
2 2 1 0 0

−√
2 1 2 0 0

0 0 0 4 1
0 0 0 1 4

⎞⎟⎟⎟⎟⎠

A3 D2(π,πρ2)

⎛⎜⎜⎜⎜⎝
4

√
2 −√

2 0 0√
2 3 2 0 0

−√
2 2 3 0 0

0 0 0 3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠

A4 Z2(π ) ∼= Z2(πρ2)

⎛⎜⎜⎜⎜⎝
3

√
2

√
2

√
2 0√

2 3 0 −1 0√
2 0 3 −1 0√
2 −1 −1 4 0

0 0 0 0 3

⎞⎟⎟⎟⎟⎠

A5 1 G

gives a partition of the nodes into clusters (a potential cluster
state from symmetry). Next, merge some of these clusters as
possibilities for new cluster states before finally checking if
the merged cluster state (which cannot be one of those which
arises due to symmetry) is dynamically valid. By this we mean
that if we set all of the xi to be equal for nodes in the merged
clusters, the equations of motion are consistent. This checking

FIG. 5. The lattice of cluster states given by network symmetry
for the five-node network with connectivity (9). Arrows indicate
inclusion.

for consistency in the network equations can be done by eye for
small networks. However, a better way to complete this final
step for large networks is to automate the checking process
using computational algebra tools [38,39]. To do this, we use
the following steps which are described in greater detail in [10].
If the clusters we wish to merge are synchronized, then the
dynamics is equivalent to those which would be obtained if
nodes in the same merged cluster were not connected [since the
feedback term H(xi) will cancel coupling terms of nodes from
the same merged cluster]. This gives a dynamically equivalent
graph Laplacian matrixG which is the original graph Laplacian
matrix G with off-diagonal entries between nodes in the same
merged cluster set to 0 and the diagonals set to the negative of
the new row sums. If, when we compute the symmetry group
� of the network with this graph Laplacian, one of its isotropy
subgroups corresponds to our merged cluster state, then the
dynamics is flow invariant and our merged cluster state is a
dynamically valid synchronized state. Sorrentino et al. [10]
call the cluster states found in this way Laplacian clusters. Note
that there is no need to check mergings between subgroups of
the same group Hi .

Example: Laplacian clusters. For the same five-node net-
work as discussed previously, we can see that if we take
isotropy subgroup � = Z2(ρ2) which gives the clusters {1,3},
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TABLE II. Cluster states due to Laplacian coupling in a network with connectivity given by (9).
Here, we have used identical labeling for the cluster states to that given in [10]. We also give for each
type of cluster state a corresponding block-diagonalization of the connectivity matrix G ′′ = χGχ−1

for an appropriate transformation matrix χ .

Label Cluster state G ′′

L1

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 5

⎞⎟⎟⎟⎟⎠

L3

⎛⎜⎜⎜⎜⎝
3 −√

6 0 0 0
−√

6 2 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠

L4

⎛⎜⎜⎜⎜⎝
3 −√

3 0 0 0
−√

3 2 −√
3 0 0

0 −√
3 3 0 0

0 0 0 5 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠

{2,4}, and {5}, then one potential Laplacian merged cluster
state may be {1,3,5}, {2,4}. This merging gives new graph
Laplacian matrix

G =

⎛⎜⎜⎜⎝
2 −1 0 −1 0

−1 3 −1 0 −1
0 −1 2 −1 0

−1 0 −1 3 −1
0 −1 0 −1 2

⎞⎟⎟⎟⎠.

A network with this connectivity matrix has symmetry group
� generated by S = {(13),(35),(24)}. Thus, the isotropy sub-
group � gives the clusters {1,3,5}, {2,4} and therefore this
cluster state is dynamically valid. It is called L3 in Table II
(along with its conjugate cluster state).

Another potential Laplacian merged cluster state may be
{1,2,5}, {3,4} from merging clusters from the symmetry cluster
state A2 (see Table I). In this case, the merging gives a new
graph Laplacian matrix

G =

⎛⎜⎜⎜⎝
1 0 0 −1 0
0 1 −1 0 0
0 −1 2 0 −1

−1 0 0 2 −1
0 0 −1 −1 2

⎞⎟⎟⎟⎠,

which corresponds to a network with symmetry group � gen-
erated by S = {(12)(34)}. Here, the only isotropy subgroups
are � which gives the cluster state A2 and the trivial subgroup
which gives the cluster state A5. Thus, this merging of clusters
does not give a dynamically valid state. Table II gives a list of
all dynamically viable Laplacian cluster states for the five-node
network. �

For Laplacian coupled networks with symmetry, Sorrentino
et al. [10] argue that their algorithm for computing cluster
states which do not arise directly from symmetry is much
more computationally efficient than algorithms not based on

symmetries which compute all balanced colorings for any
network topology, in particular that of Kamei and Cock
[40]. They are careful to point out that while the checking
stage (computing geometric decompositions and subgroups)
is computationally efficient, the number of possible cluster
mergings which must be checked grows combinatorially with
the number μ of cluster states from symmetry with an upper
bound of Bμ, the μth Bell number. Thus, the algorithm of
Sorrentino et al. [10] is much faster than that of Kamei and
Cock [40] when the number of cluster states from symmetry
is small compared to the size of the network, that is μ � N .
Both Sorrentino et al. [10] and Kamei and Cock [40] note that
finding all dynamically valid cluster states for networks with
Laplacian coupling may be substantially more difficult than for
symmetric networks without self-coupling where connectivity
is described by an adjacency matrix and all cluster states arise
due to network symmetries.

C. Stability of cluster states

The methods outlined in Secs. III A and III B provide a
catalog of possible cluster states which may exist within a given
network with graph Laplacian coupling (1). In applications,
which of these states may exist and be stable will depend
on the particular choices we make for the local dynamics F
and the coupling function H as well as the global coupling
strength σ . The presence of symmetry within the system
imposes constraints on the form of the Jacobian matrix which
can be used to greatly simplify stability calculations. Here,
we briefly review well-established methods for stability calcu-
lations within symmetric systems which apply to the cluster
states which arise from network symmetries [41]. We also
summarize the results of Sorrentino et al. [10] which extend
these techniques to Laplacian cluster states.

First, consider a periodic cluster state arising from network
symmetry that has isotropy � ⊆ �. The fixed-point subspace
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of this subgroup is ϒ = Fix(�) which is the synchrony sub-
space for the cluster state. The state consists of M clusters Ck ,
k = 1, . . . ,M , where M = dim[Fix(�)] = dim(ϒ). Letting
sk(t) denote the synchronized state of nodes in cluster Ck , and
using the notation of Sec. II, the variational equation of (1)
about the cluster state is

d

dt
U =

[
M∑

k=1

E(k) ⊗ DF(sk(t))

−σ

M∑
k=1

(GE(k)) ⊗ DH(sk(t))

]
U, (10)

where E(k) is the diagonal N × N matrix such that E
(k)
ii = 1

if i ∈ Ck and E
(k)
ii = 0 otherwise. To determine the stability

of the periodic cluster state, we need to compute the Floquet
exponents of (10). This task can be greatly simplified due to
the fact that the system of variational equations can be block-
diagonalized using the symmetries present in the system.

The node space can be decomposed into a number of
irreducible representations of the isotropy subgroup �. Some
of these subspaces will be isomorphic to each other and
we combine these to obtain the isotypic components of the
node space. Each isotypic component is invariant under the
variational equation (10) so Floquet exponents can be found
by considering the restriction of the equations to each isotypic
component. Thus, the decomposition puts the variational
equations into block-diagonal form and we then compute
Floquet exponents for each block to determine stability of
the cluster state. The process of isotypic decomposition and
its use in stability computations is derived in detail in [41].
Pecora et al. [9] give an explicit algorithm to determine the
isotypic decomposition for a given cluster state from symmetry
and compute the transformation matrix Q such that G ′ =
QGQ−1 is block-diagonal. Applying this transformation to the
variational equation (10), we obtain block-diagonal system of
equations

d

dt
V =

[
M∑

k=1

J (k) ⊗ DF(sk(t))

−σ

M∑
k=1

(G ′J (k)) ⊗ DH(sk(t))

]
V, (11)

where V(t) = (Q ⊗ Im)U(t) and J (k) = QE(k)Q−1. In Table I
we give the block-diagonalized graph Laplacian matrix for
each of the cluster states from symmetry. An important
point to note is that the isotypic component of the trivial
representation is Fix(�) = ϒ , the synchronization manifold.
The block corresponding to this component is the M × M

block which appears in the top left in each of the examples
in Table I. This block corresponds to perturbations within
the synchronization manifold and will always have a Floquet
exponent equal to 0. The remaining blocks correspond to
the isotypic components of other irreducible representations
of �. When the node space representation contains l � 1
isomorphic copies of a particular irreducible representation,
this will result in a block of dimension l. For example, see
the 2 × 2 block in the block-diagonalization for cluster state
A2 in Table I. These blocks represent perturbations transverse

to the synchronization manifold and Floquet multipliers from
these blocks will determine stability under synchrony-breaking
perturbations. For the cluster state to be stable, all Floquet
exponents (except the one which is always 0) must have
negative real part.

In the case of a periodic Laplacian cluster state, the syn-
chronization manifold is an invariant subspace, but it is not
the fixed-point subspace of any subgroup of �. However, we
can still find a block-diagonalization of G which has in the
top left a block which corresponds to perturbations within the
synchronization manifold. We do this following the algorithm
of Sorrentino et al. [10]. Suppose that we start with a cluster
state from symmetry with isotropy � which has M clusters
and whose variational equations are block-diagonalized by
the matrix Q. Now, suppose that a Laplacian cluster state is
obtained by merging together two of the clusters in this state.
The dimension of the synchronization manifold decreases by
one, while the dimension of the transverse manifold increases
by one. New coordinates on the synchronization manifold are
obtained by transforming the new synchronization vector in the
node space coordinates (this has a 1 in the position of every
node in the new merged cluster and 0’s elsewhere) into the
coordinates of the block-diagonalization of the cluster state
with isotropy �. The orthogonal complement provides the
new transverse direction. Normalizing the resulting vectors
and entering them as rows of an orthogonal matrix Q′ whose
other rows have Q′

ij = δij , we find that the matrix χ = Q′Q
block-diagonalizes G to a matrix G ′′ which has top left block
of dimension (M − 1) × (M − 1). Thus, the transformation
matrix χ will block-diagonalize the variational equations for
the Laplacian cluster state so we may more easily determine
the m(M − 1) Floquet exponents within the synchronization
manifold and the m(M + 1) transverse Floquet exponents.

Example: Block-diagonalization. We revisit the example
five-node network of Sorrentino et al. [10]. The block-
diagonalizations for the cluster state A3 and the merging which
gives cluster state L3 are covered in [10]. Here, we consider
the cluster states A4 and L4 for illustration of the algorithms
outlined above. The cluster state A4 has (choosing one option
from the conjugacy class as they have identical existence and
stability properties) isotropy subgroup Z2(π ). This group has
only two irreducible representations: the trivial representation
and the representation where π acts as multiplication by
−1. The node space representation contains four isomorphic
copies of the trivial representation and one copy of the other
representation. Following the algorithm given explicitly in [9]
we obtain

Q = 1

2

⎛⎜⎜⎜⎜⎝
2 0 0 0 0
0 −√

2 0 −√
2 0

0 0 2 0 0
0 0 0 0 2
0 −√

2 0
√

2 0

⎞⎟⎟⎟⎟⎠,

and G ′ as in Table I.
Now, consider the Laplacian cluster state L4 which is found

by merging {2,4} with {5} to give a two-cluster state {2,4,5},
{1,3}. The new synchronization vector in node coordinates
will be v1 = (0,1,0,1,1)T and new transverse vector is v2 =
(0,1,0,1, − 2)T . Normalizing Qv1 and Qv2 we see that we
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must put these vectors as rows 2 and 4 of the orthogonal matrix
Q′ to obtain

Q′ = 1

3

⎛⎜⎜⎜⎜⎝
3 0 0 0 0
0 −√

6 0
√

3 0
0 0 3 0 0
0 −√

3 0 −√
6 0

0 0 0 0 3

⎞⎟⎟⎟⎟⎠,

and G ′′ = Q′G ′(Q′)−1 as in Table II. �

IV. ORBITS AND VARIATIONAL EQUATIONS
FOR NONSMOOTH SYSTEMS

Using the algorithms in Sec. III one can, given a network
structure, compute the catalog of cluster states (from symmetry
and Laplacian coupling) which may be observed for given local
dynamics F and interaction function H. It is also possible to
block-diagonalize the variational equations needed to compute
the stability of a given cluster state. However, in practice, to
determine which of the cluster states are stable and to carry out
any kind of bifurcation analysis, we observe from (11) that we
will require closed form solutions for the periodic cluster state.
For many of the situations in which one would wish to apply the
framework, this information simply is not available. Therefore,
we turn our attention to networks of PWL oscillators where, as
we will show here, it is relatively straightforward to construct
the periodic orbits for the cluster state and additionally apply
the required modifications to the Floquet theory to account for
the lack of smoothness of the dynamics.

Here, we demonstrate how the computations of periodic
cluster states and their stability may be carried out for a two-
cluster state in a network with two-dimensional local dynamics
and one switching plane. The method outlined here can easily
be extended to larger numbers of clusters and more complex
local PWL dynamics (e.g., with more switching planes and
jump discontinuities) and we consider such examples in Sec. V.

Consider the specific case of a two-cluster state L3 in the
five-node example network with graph Laplacian given by (9).
Let each of the nodes have two-dimensional local dynamics
given by the absolute model, which is named because it has
one nullcline described by the absolute value function (and see
[24] for a further discussion), where

AL =
[−1 −1

1 −g

]
, AR =

[
1 −1

1 −g

]
,

cL =
[

0

gw̄ − v̄

]
= cR,

with 0 < g < 1, gw̄ < v̄, and indicator function h(z; 0) = v.
This model supports a nonsmooth Andronov-Hopf bifurcation
which occurs when the equilibrium moves from v < 0 to
v > 0 crossing the switching manifold. When the (unstable)
equilibrium lies in SR , a periodic orbit for the single node
dynamics can be constructed by connecting two trajectories,
one in each of the half-planes. Starting from initial data
z(0) = (0,w(0))T, this requires that we simultaneously solve
the three nonlinear equations v(TR) = 0, v(�) = 0, w(�) =
w(0), where � is the period of the orbit, TR is the time of flight
in SR , and thus � > TR > 0. We do this numerically using
MATLAB’s fsolve routine. The periodic orbit can be shown to

-1

 0

 1

 2

 3

-1  0  1  2v

w

FIG. 6. Phase plane of the absolute model with v̄ = 0.1, w̄ =
−0.1, and g = 0.5. The v-nullcine is in red (solid line) and the w-
nullcline is in green (dashed line). The unstable equilibrium point lies
in SR and a stable periodic orbit is shown in blue.

be stable with Floquet exponent [18]

r = −g − � − 2TR

�
.

The nullclines for the model together with the stable periodic
orbit are shown in Fig. 6.

Now, couple these nodes together into a network described
by (1) whereG is given by (9) and the coupling function is given
by H(z) = (v,0)T (diffusive coupling). Numerical simulations
of the network equations with the parameter values of Fig. 6
indicate that a periodic L3 cluster state exists with coupling
strength σ = −0.03. On this cluster state z1 = z3 = z5 = s1

and z2 = z4 = s2. (Recall that the conjugate cluster state where
z1 = z3 and z2 = z4 = z5 has the same existence and stability
properties.) On this invariant subspace, the equations have the
form ṡ = Aμ1,μ2 s + cμ1,μ2 where s = (s1,s2)T,

Aμ1,μ2 =
[
Aμ1 − 2σDH 2σDH

3σDH Aμ2 − 3σDH

]
, cμ1,μ2 =

[
cμ1

cμ2

]
,

and

μi =
{
L, vi < 0

R, vi > 0.

This is simply a four-dimensional PWL system with two
switching planes v1 = 0 and v2 = 0. The periodic orbit on
the four-dimensional synchronous manifold can again be
constructed by connecting together trajectories which satisfy
the linear ODEs in each region across the switching planes.
Starting from initial data s(0) = (0,w1(0),v2(0),w2(0))T, we
now have to solve a system of seven nonlinear algebraic
equations for w1(0),v2(0),w2(0) and the four switching times
T1,1, T2,1, T2,2, and T1,2 = � (see Fig. 7).

The initial data and switching times can now be used to
compute explicitly the Floquet multipliers for the periodic or-
bit, making use of the block-diagonalization of the variational
equations (11). Multipliers corresponding to perturbations
within the synchronization manifold can be computed without
using the block-diagonalization. We have

d

dt
δs = Aμ1,μ2δs,
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FIG. 7. The v components of the orbits s1 and s2 over one period.
Seven nonlinear algebraic equations must be solved to find the
unknown initial data w1(0), v2(0), w2(0) and switching times T1,1,
T2,1, T2,2, and T1,2 = � as shown.

which can be solved using matrix exponentials, being careful
to use saltation matrices to evolve perturbations through
switching manifolds. After one period

δs(�) = �sδs(0),

where from Fig. 7

�s = K12EL,R(� − T1,1)K11ER,R(T1,1 − T2,2)

× K22ER,L(T2,2 − T2,1)K21ER,R(T2,1), (12)

with saltation matrices

Kij = Pi ⊗ Ki(Ti,j ), P1 =
[

1 0

0 0

]
, P2 =

[
0 0

0 1

]
,

Ki(t) =
[

v̇i(t+)/v̇i(t−) 0

[ẇi(t+) − ẇi(t−)]/v̇i(t−) 1

]
, i = 1,2 (13)

and

Eμ1,μ2 (t) = eAμ1 ,μ2 t , μi ∈ {L,R}.
The Floquet multipliers are the eigenvalues of �s . One of these
eigenvalues will always be 1 corresponding to perturbations
along the periodic orbit.

In the directions transverse to the synchronization manifold,
the block-diagonalization of G results in the following three
decoupled Floquet problems:

V̇3 = [DF(s1) − 3σDH]V3,

V̇4 = [DF(s2) − 3σDH]V4,

V̇5 = [DF(s1) − 5σDH]V5,

which again can be solved using matrix exponentials and
saltation matrices: Vi(�) = �ti Vi(0) where

�t3 = K1(�)E3
L(� − T1,1)K1(T1,1)E3

R(T1,1),

�t4 = E3
R(� − T2,2)K2(T2,2)E3

L(T2,2 − T2,1)

× K2(T2,1)E3
R(T2,1),

�t5 = K1(�)E5
L(� − T1,1)K1(T1,1)E5

R(T1,1),

W

0

2

4

6

-2 0 2 4 V
-1

Im
1

Re 1-1

FIG. 8. Left: the periodic orbits s1 (magenta) and s2 (red) for
absolute model local dynamics with values of parameters as in Fig. 6
and coupling strength σ = −0.03. The period � ≈ 9.16. Right: the
Floquet multipliers for the periodic orbit lie inside the unit disk
indicating that the orbit is stable. Floquet multipliers within the
synchronization manifold are shown in red, transverse directions are
in blue.

and

Eβ
μ (t) = e(Aμ−βσDH)t .

The eigenvalues of the �tj , j ∈ 3,4,5, give the Floquet
multipliers for directions transverse to the synchronization
manifold.

Note that the change of basis from U coordinates to V
coordinates has no effect on the action of the saltation matrices:
recall V = (Q ⊗ Im)U. To progress U through a switch or
discontinuity then U+ = KU−, where

K =
M∑

k=1

E(k) ⊗ Kk.

Thus, V+ = K̂V where

K̂ = (T ⊗ Im)K(T ⊗ Im)−1 =
M∑

k=1

(T E(k)T −1 ⊗ Kk)

=
M∑

k=1

(J (k) ⊗ Kk).

Since the vector field for the absolute model is continuous, in
this case all saltation matrices are the identity. Figure 8 shows
the Floquet multipliers for the choice of parameter values as in
Fig. 6. As they all lie inside the unit disk (with the exception
of the one which is forced to be 1) the periodic orbit, as shown
in the left-hand panel of Fig. 8, is stable.

We can locate bifurcations of the periodic orbit by determin-
ing when Floquet multipliers leave the unit disk (noting that
the ordering of times which the trajectories cross the switching
planes may also change as parameters are varied). Treating all
cluster types we can build up bifurcation diagrams. For the
absolute model with the parameters for the local dynamics as
given in Fig. 6, bifurcations which can be found upon varying
coupling strength σ are shown in Fig. 9. All bifurcations from
stable states are of tangent type where a Floquet multiplier
passes through +1.

V. FURTHER APPLICATIONS AND EXAMPLES

Extending the techniques illustrated in Sec. IV, here we
discuss the cluster patterns and bifurcations which occur for
different PWL local dynamics on the five-node network (9). We
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FIG. 9. Bifurcations between cluster states upon variation of coupling strength σ in the five-node network of nodes with absolute model
local dynamics (parameters as in Fig. 6). Stable periodic solutions are denoted by solid lines while unstable solutions are denoted by dotted
lines. Each branch is colored according to the circle containing the relevant cluster state. In the case of the L3 branch where a conjugate solution
is expected with identical stability properties, only one branch is shown. The inset shows the mean field dynamics (〈v〉,〈w〉) = ∑5

i=1(vi,wi)/5,
for σ = −0.05. The dynamics blows up in finite time while remaining as an A3 cluster state. This behavior dominates for σ � −0.0477 where
the L3 branch loses stability. Here, all bifurcations from stable states are of tangent type where a Floquet multiplier passes through +1.

consider a diffusively coupled network of PWL Morris-Lecar
oscillators (which has more than one switching plane) and the
integrate-and-fire network model with event-driven synaptic
coupling as discussed for the case of global synchrony in
Sec. II A (which has jump discontinuities within the vector
field). We show that each model of local dynamics gives a
very different variety of cluster state dynamics, demonstrating
that emergent network behavior depends as much on node
dynamics as network structure.

A. Piecewise linear Morris-Lecar network

We now investigate dynamics of a network of planar PWL
nodes with more than one switching plane. Consider the
five-node network given by graph Laplacian coupling matrix
(9) where the local dynamics F is given by a PWL reduction
of the Morris-Lecar model (PML) [42], and the coupling
function is again given by H(z) = (v,0)T (diffusive coupling).
Figure 10 shows the phase plane for this model in the regime
where there are type I oscillations (emerging with arbitrarily
low frequency from a homoclinic bifurcation) and bistability
between a periodic orbit and a stable fixed point. The dynamics
of the PWL model is defined by

Cv̇ = f (v) − w + I, ẇ = g(v,w),

where

f (v) =

⎧⎪⎨⎪⎩
−v, v < a/2

v − a, a/2 � v � (1 + a)/2

1 − v, v > (1 + a)/2

and

g(v,w) =
{

(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v � b

with a/2 � b∗ � (1 − a)/2 and a/2 � b � (1 + a)/2.

The periodic orbit (as shown in Fig. 10) consists
of four pieces labeled by μ = 1, . . . ,4. On each sec-
tion zμ(t) = Eμ(t)zμ(0) + Kμ(t)cμ where Eμ(t) = eAμt , and
Kμ(t) = A−1

μ [Eμ(t) − Im] with A3 = A1, c3 = c1 and

A1 =
[

1/C −1/C

1/γ2 −1

]
, A2 =

[−1/C −1/C

1/γ2 −1

]
,

A4 =
[

1/C −1/C

1/γ1 −1

]
, c1 =

[
(I − a)/C

b∗ − b/γ2

]
,

c2 =
[

(1 + I )/C

b∗ − b/γ2

]
, c4 =

[
(I − a)/C

b∗ − b/γ1

]
.

The periodic orbit crosses two switching planes with indica-
tor functions h1(z; 0) = v − b and h2(z; 0) = v − (1 + a)/2.
Therefore, for initial data z(0) = (b,w(0)), to find the periodic
orbit we must solve the system of five nonlinear algebraic
equations

v(T1) = (1 + a)/2, v(T1 + T2) = (1 + a)/2,

v(T1 + T2 + T3) = b, v(�) = b, w(0) = w(�),

for the switching times T1, T2, T3, the period �, and the initial
value w(0). This periodic orbit can be shown to be stable with
Floquet exponent [42]

r = −1 + (� − 2T2)/(C�).

Note that other types of periodic solutions are possible, such as
those that cross only v = b or v = (1 + a)/2, or ones that do
not cross either of the switching manifolds (as for a periodic
orbit surrounding a linear center).

When nodes with PML local dynamics are diffusively
coupled with the structure given by graph Laplacian (9), a
number of different stable cluster states are observed. Similarly
to the case of node dynamics described by the absolute model
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FIG. 10. The phase plane for the piecewise linear Morris-Lecar
(PML) model with γ1 = 2, γ2 = 0.25, C = 0.825, I = 0.1, a = 0.25,
b = 0.5, and b∗ = 0.2. The v-nullcline is shown in red and the w-
nullcline in magenta. The filled black circle indicates a stable fixed
point, the gray filled circle a saddle, and the filled white circle an
unstable fixed point. The periodic orbit is shown in blue. The pale
blue line passing through the saddle (gray filled circle) is the separatrix
between the stable fixed point (black filled circle) and the stable limit
cycle (in blue).

as discussed in Sec. IV, we can locate periodic orbits for cluster
states and carry out linear stability calculations. We can then
produce bifurcation diagrams such as those given in Fig. 11.
Note that just as for the absolute model local dynamics, the
PML model has a continuous vector field and therefore again all
saltation matrices (13) are the identity. In practice, dealing with
changes in the ordering of event crossings (defining a cluster)
and to gain insight into what types of cluster state are possible
(to provide good initial guesses for a numerical root-finding
scheme), we also did simulations of a corresponding set of

smooth ODEs, with a sufficiently steep switch to mimic the
PML system.

The bifurcation diagram in Fig. 10 shows the presence of
six of the possible eight cluster states. All but the L4 branch
possess a range of values of σ for which the periodic cluster
state is stable. In the region 0.033 � σ � 0.071 where there are
no stable branches of periodic cluster states, aperiodic behavior
such as that shown in the inset of Fig. 11 dominates. There is
also a stable multirhythm, where nodes can oscillate at different
frequencies (not shown in Fig. 11). This has x1(t) = x2(t +
�/2), x3(t) = x4(t + �/2), and x5(t) = x5(t + �/2), so x5

has a period of oscillation which is half that of xi , i = 1, . . . ,4.
The amplitudes of x1 and x5 are also very small, resulting in
a much smaller L2 norm than the other solutions shown in
Fig. 11.

B. Piecewise linear integrate-and-fire network

As our final example, we consider a network of synapti-
cally coupled PWL-IF neurons as discussed for the case of
synchrony in Sec. II A. We continue to use the same five-node
structured network (9). We also choose for the local dynamics
parameter values as in the top left of Fig. 1 that give tonic firing
of each of the nodes when the coupling strength σ is 0. Setting
the value of the synaptic rate parameter α = 0.4, we observe a
number of different stable cluster states depending on the value
of the coupling strength σ . A selection of these cluster states are
given in Fig. 12. For these parameter values, the (tonic firing)
synchronous state (L1) is stable for 0 � σ � 0.0334. This
undergoes a period-doubling bifurcation at σpd � 0.0334 to an
A3 cluster state of doublets such as that pictured in Fig. 12(a)
for σ � 0.038. For 0.0395 � σ � 0.0485, this solution branch
[as pictured for σ � 0.043 in Fig. 12(b)] is bistable with the
periodic four-cluster state A4 where x1 and x3 are not equal,

L  norm
2

0.2

0.4

0.6

0.60.50.4

0 0.1 0.2

1.3

1.4

1.5

FIG. 11. Branches of cluster states and their stability upon variation of coupling strength σ in the five-node network of nodes with PML local
dynamics (parameter values as in Fig. 10) and diffusive coupling. Stable periodic solutions are denoted by solid lines while unstable solutions are
denoted by dotted lines. Each branch is colored according to the circle containing the relevant cluster state. In cases where conjugate solutions
are also expected with identical stability properties (i.e., for the A2, A4, L3, and L4 branches) only one branch is shown. The inset shows the
mean field dynamics for σ = 0.065. This kind of aperiodic behavior dominates for 0.033 � σ � 0.071. There is also a stable multirhythm for
0.0025 � σ � 0.0531 (see main text).
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FIG. 12. Examples of cluster states for α = 0.4 and different values of coupling strength σ in a network of five PWL-IF neurons. All
parameters for the local dynamics are as in Fig. 1, top left. The left panels show the time series for the voltage variable vi for each of the clusters
within the state while the right panel shows each of the periodic orbits in the (vi,wi) plane. (a) A stable (A3) cluster state where each cluster
fires twice per period observed for σ = 0.038. In the right-hand panel, the orbit for x1 is obscured by that of x5 as (up to phase shift) they have
virtually identical shape. (b), (c) Show the bistable A3 and A4 cluster states, respectively, for σ = 0.043. As x1 and x3 are very close in the A4
cluster state, the orbit of x3 obscures that of x1. (d), (e) Show the A3 and L3 cluster states which are bistable at σ = 0.08. For large values of
σ , the A3 cluster state remains stable but undergoes spike adding as in (e) where three spikes are observed within each cluster per orbit.

but so close that it is hard to distinguish their time series and
orbits [shown in blue and orange, respectively, in Fig. 12(c) for
σ � 0.043]. Further increasing σ beyond 0.0485 leads to a loss
of periodicity of solutions (both aperiodic A4 and A5 solution
branches are observed). At around σ = 0.07 again we see a
stable periodic A3 cluster state for which all orbits now pass
through the switch at vi = 0. This is pictured in Fig. 12(d) for
σ � 0.08 where the solution is bistable with the two-cluster L3
solution as in Fig. 12(e). The A3 cluster state remains stable for
σ � 0.07 undergoing a series of spike adding bifurcations for
large values of σ . Figure 12(f) shows the solution branch when
σ = 8 where each cluster spikes three times per orbit. We note
that recent work by Chen et al. [43] has also considered cluster
states in leaky IF networks with α-function synapses, although

their results are restricted to weak coupling in small all-to-all
coupled networks.

VI. DISCUSSION

In this paper, we have shown how to extend the well known
MSF formalism for networks of smooth dynamical systems
to treat PWL models relevant to the modeling of coupled
neural oscillators. Moreover, we have also augmented the
recent extension of the MSF approach that treats synchronous
cluster states (exploiting spatial or pointwise network symme-
tries and balanced colorings). We have illustrated the general
theory using some relatively simple networks, though with
various choices of node dynamics. This has highlighted that
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the degree of synchronization or type of clustering pattern
observed in neuronal networks may have as much to do
with the choice of connectivity as it has with the choice
of node dynamics. This reinforces the notion that care must
be taken when trying to recover structural connectivity from
functional connectivity [44,45]. Similarly, it is known that
the reconstruction of network dynamics from observables
can be strongly influenced by symmetries [46]. Although we
have focused on example systems drawn from theoretical
neuroscience, there are many PWL models in physics and
engineering for which the framework we have presented can
also be applied, such as electromechanical oscillator networks
[47]. Interestingly, recent work by Cho et al. [48] has made a
connection between synchronized cluster states and chimeras
[49,50], where a subpopulation of oscillators synchronizes in
an otherwise incoherent sea. By exploiting the symmetries of
the network they show how to construct cluster partitions, in
which the synchronization stability of the individual clusters
in each set is decoupled from that in all the other sets. Using
this they show that a chimera can exist if the fully synchronous
solution is unstable and there is a cluster state with a main
stable group, and all other clusters unstable. Thus, it would be
of interest to revisit this work, formulated in a smooth setting,
using the PWL perspective presented here.

It is well to mention that we have only considered networks
of identical oscillators, and it is well known that heterogeneity
can disrupt synchrony [51]. The MSF extension to nearly
identical units is relatively straightforward [52], though for
PWL systems there is also the further possibility of the
explicit construction of network states (by patching together
local trajectories). However, the MSF is not the only tool for
analyzing cluster states and it would be interesting to consider
the augmentation of Lyapunov function methods, such as those
developed by Belyk et al. [53], to treat nonsmooth systems with
event driven interactions. In a neural context it would also be
important to treat delays (arising from the finite speed of action
potential propagation), and there is a growing body of work
in this area that could be revisited from a PWL perspective
[54–56]. Indeed, delays are well known to lead to oscillatory in-
stabilities, which at the network level may manifest as traveling
waves. This highlights an important mathematical extension of
the work presented here, namely, that periodic states have phase
shift symmetries which must also be accounted for. When
combined with the pointwise network symmetries, these lead
to spatiotemporal symmetries [36,57].

A periodic solution x(t) has a group K of spatial symmetries
[the γ ∈ � such that γ x(t) = x(t) for all t]. It is these symme-
tries which we have discussed in this paper. However, periodic
orbits also possess a group H of spatial symmetries under
which the periodic orbit is invariant [that is the γ ∈ � such that
{γ x(t) : t ∈ R} = {x(t) : t ∈ R}]. Thus, there exists a phase
shift φ ∈ S1 such that γ x(0) = x(φ) and therefore γ x(t −
φ) = x(t) for all t . The pair (γ,φ) define a spatiotemporal
symmetry of the periodic orbit. The group K is normal in
H and H/K is a finite subgroup of S1. If H = K then there
are no phase shift symmetries. The pair (H,K) determines
the pattern of phase shifts (up to isomorphism). Patterns of
phase shifts which may exist for a given network structure
with symmetry group � can be determined using the H/K

theorem [57]. This theorem gives conditions on subgroups

K ⊆ H ⊆ � such that the pair (H,K) could determine the
spatiotemporal symmetries of a hyperbolic periodic solution of
the �-equivariant network equations, allowing one to compute
a catalog of possible phase shifted states. These may include
so called multirhythm states (such as that found here for the
PWL Morris-Lecar local dynamics on the five-node network,
see Sec. V A) where some cells are forced to oscillate with
a frequency that is a rational multiple of that of the other
cells [36]. Other phase shifted cluster states may also arise due
to additional constraints imposed by the choice of Laplacian
or balanced coupling. There are also approaches exploiting
spatiotemporal symmetries for computing stability of periodic
states near Hopf bifurcation [41] which may also be extendable
to phase shifted cluster states from Laplacian or balanced
coupling. The extension of our work to treat spatiotemporal
symmetries will be presented elsewhere.
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APPENDIX: SALTATION MATRICES

Saltation matrices are a useful way to augment the standard
theory of smooth dynamical systems to treat the evolution
of perturbations through regions in phase space where there
is a discontinuity in the vector field or the flow. They have
recently been used in a PWL network setting in [18], and
for nonlinear IF networks in [26]. Here, we combine these
two perspectives to construct the saltation matrices for hybrid
systems that may have switches in their dynamics as well
as discontinuities arising from reset. Given that these cannot
occur at the same time, we adopt a notation to track either of
these types using an indicator function h(z) such that an event
(switching or reset) occurs when h(z(T )) = 0 (with different
choices of h for switching and reset). The state of the system
after an event is given by z(T +) = g(z(T )). Let us now consider
an arbitrary trajectory of a dynamical system ż = F(z) and
linearize around this trajectory. Between switching or firing
events small perturbations δz satisfy

d

dt
δz(t) = DF(z(t))δz(t), δz(0) = δz0.

For the PWL models discussed in this paper, then DF(z(t)) is
a piecewise constant matrix, so that δz(t) = exp(At)δz0 with
A a constant matrix (such as AL,R in Sec. II A). A perturbed
trajectory defined by z̃(t) can be constructed as z̃(t) = z(t) +
δz(t). We can then define a corresponding perturbed event time
T̃ according to the condition h(̃z(T̃ )) = 0. We shall denote
the difference in the unperturbed and perturbed event times as
δT = T̃ − T . For the case that δT < 0 we have that z̃(T +) =
z̃(T̃ + − δT ) � z(T̃ +) − ż(T̃ +)δT (see Fig. 13). Hence,

z̃(T +) � g(z(T̃ −)) − ż(T̃ +)δT

� g[̃z(T −) + ˙̃z(T −)δT ] − ż(T̃ +)δT

� g[z(T −) + δz(T −) + ˙̃z(T −)δT ] − ż(T̃ +)δT .
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FIG. 13. Evolution of a perturbation at a switching or firing event.
The solid blue line is the trajectory of an unperturbed orbit, with the
event at time T . The dashed red line is the perturbed trajectory with
an event at time T̃ . In this illustration, the deviation in event times is
δT = T̃ − T < 0.

By performing a Taylor expansion of g we obtain

z̃(T +) � z(T +) + Dg(z(T −))[δz(T −) + ˙̃z(T −)δT ]

− ż(T̃ +)δT , (A1)

where we have used the result that g(z(T −)) = z(T +). To
calculate δT we Taylor expand the indicator function for the
perturbed trajectory as

h(̃z(T̃ −)) = h[z(T − + δT ) + δz(T − + δT )]

� h[z(T −) + ż(T −)δT + δz(T −)]

� h(z(T −)) + ∇zh(z(T −)) · [ż(T −)δT + δz(T −)].

Using the fact that h(̃z(T̃ −)) = 0 = h(z(T −)) we have that

δT = −∇zh(z(T −)) · δz(T −)

∇zh(z(T −)) · ż(T −)
. (A2)

Now, making use of the approximations ˙̃z(T −) � ż(T −) and
ż(T̃ +) � ż(T +) (see Fig. 13), we may use (A1) and (A2) to
construct δz(T +) in the form

δz(T +) � K(T )δz(T −),

where K(T ) is the saltation matrix

K(T ) = Dg(z(T −))

+ [ż(T +) − Dg(z(T −))ż(T −)][∇zh(z(T −))]T

∇zh(z(T −)) · ż(T −)
.

The saltation matrix allows us to relate perturbations just before
an event to those just after. A similar calculation with δT > 0
gives precisely the same formula for K(T ). We note that for a
switching event (where reset does not occur) then g(z) = z and
Dg(z) is the identity matrix. Moreover, if in this case the vector
field is continuous then ż(T +) = ż(T −) and K(T ) reduces to
the identity matrix as expected.

For the single PWL-IF node z ∈ R2 with ∇zh(z; vth) =
(1,0)T, and

Dg(z) =
[

0 0

0 1

]
.

For the PWL-IF network zi ∈ R4 with ∇zh(zi ; vth) =
(1,0,0,0)T, and

Dg(zi) =

⎡⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦.
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