Mina Jafari
LMISA: A Lightweight Multi-modality Image Segmentation Network via Domain Adaptation using Gradient Magnitude and Shape Constraint
Jafari, Mina; Francis, Susan; Garibaldi, Jonathan M.; Chen, Xin
Authors
Professor SUSAN FRANCIS susan.francis@nottingham.ac.uk
Professor of Physics
Prof. JONATHAN GARIBALDI JON.GARIBALDI@NOTTINGHAM.AC.UK
Provost and Pvc Unnc
XIN CHEN XIN.CHEN@NOTTINGHAM.AC.UK
Associate Professor
Abstract
In medical image segmentation, supervised machine learning models trained using one image modality (e.g. computed tomography (CT)) are often prone to failure when applied to another image modality (e.g. magnetic resonance imaging (MRI)) even for the same organ. This is due to the significant intensity variations of different image modalities. In this paper, we propose a novel end-to-end deep neural network to achieve multi-modality image segmentation, where image labels of only one modality (source domain) are available for model training and the image labels for the other modality (target domain) are not available. In our method, a multi-resolution locally normalized gradient magnitude approach is firstly applied to images of both domains for minimizing the intensity discrepancy. Subsequently, a dual task encoder-decoder network including image segmentation and reconstruction is utilized to effectively adapt a segmentation network to the unlabeled target domain. Additionally, a shape constraint is imposed by leveraging adversarial learning. Finally, images from the target domain are segmented, as the network learns a consistent latent feature representation with shape awareness from both domains. We implement both 2D and 3D versions of our method, in which we evaluate CT and MRI images for kidney and cardiac tissue segmentation. For kidney, a public CT dataset (KiTS19, MICCAI 2019) and a local MRI dataset were utilized. The cardiac dataset was from the Multi-Modality Whole Heart Segmentation (MMWHS) challenge 2017. Experimental results reveal that our proposed method achieves significantly higher performance with a much lower model complexity in comparison with other state-of-the-art methods. More importantly, our method is also capable of producing superior segmentation results than other methods for images of an unseen target domain without model retraining. The code is available at GitHub (https://github.com/MinaJf/LMISA) to encourage method comparison and further research.
Citation
Jafari, M., Francis, S., Garibaldi, J. M., & Chen, X. (2022). LMISA: A Lightweight Multi-modality Image Segmentation Network via Domain Adaptation using Gradient Magnitude and Shape Constraint. Medical Image Analysis, 81, Article 102536. https://doi.org/10.1016/j.media.2022.102536
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 11, 2022 |
Online Publication Date | Jul 13, 2022 |
Publication Date | 2022-10 |
Deposit Date | Aug 1, 2022 |
Publicly Available Date | Aug 2, 2022 |
Journal | Medical Image Analysis |
Print ISSN | 1361-8415 |
Electronic ISSN | 1361-8423 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 81 |
Article Number | 102536 |
DOI | https://doi.org/10.1016/j.media.2022.102536 |
Keywords | Computer Graphics and Computer-Aided Design; Health Informatics; Computer Vision and Pattern Recognition; Radiology, Nuclear Medicine and imaging; Radiological and Ultrasound Technology |
Public URL | https://nottingham-repository.worktribe.com/output/8955742 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S1361841522001839?via%3Dihub |
Files
LMISA
(2.5 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Automatic generation of statistical pose and shape models for articulated joints
(2013)
Journal Article
An automatic tool for quantification of nerve fibers in corneal confocal microscopy images
(2016)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search