Ian M. Devonshire
Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
Devonshire, Ian M.; Burston, James; Xu, Luting; Lillywhite, A.; Prior, M.J.; Watson, David J.G.; Greenspon, C.M.; Iwabuchi, Sarina J.; Auer, Dorothee P.; Chapman, Victoria
Authors
James Burston
Luting Xu
A. Lillywhite
M.J. Prior
David J.G. Watson
C.M. Greenspon
Sarina J. Iwabuchi
Dorothee P. Auer
Professor VICTORIA CHAPMAN VICTORIA.CHAPMAN@NOTTINGHAM.AC.UK
PROFESSOR OF NEUROPHARMACOLOGY
Abstract
Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment.
In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation.
The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats.
Citation
Devonshire, I. M., Burston, J., Xu, L., Lillywhite, A., Prior, M., Watson, D. J., Greenspon, C., Iwabuchi, S. J., Auer, D. P., & Chapman, V. (2017). Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?. NeuroImage, 157, https://doi.org/10.1016/j.neuroimage.2017.06.034
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 16, 2017 |
Online Publication Date | Jun 17, 2017 |
Publication Date | Aug 15, 2017 |
Deposit Date | May 23, 2018 |
Publicly Available Date | May 23, 2018 |
Journal | NeuroImage |
Print ISSN | 1053-8119 |
Electronic ISSN | 1095-9572 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 157 |
DOI | https://doi.org/10.1016/j.neuroimage.2017.06.034 |
Keywords | Nociception; fMRI; Manganese; On-going pain; Osteoarthritis |
Public URL | https://nottingham-repository.worktribe.com/output/877947 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S1053811917305074?via%3Dihub |
Contract Date | May 23, 2018 |
Files
Devonshire et al_manganese enhanced magnetic resonance imaging.pdf
(1.6 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
The rat Osteoarthritis Bone Score: a new histological system for scoring subchondral pathology in rat knees analogous to histological correlates of human OA bone marrow lesions
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search