Skip to main content

Research Repository

Advanced Search

Adaptation to climate change: a comparative analysis of modelling methods for heat-related mortality

Gosling, Simon N.; Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

Adaptation to climate change: a comparative analysis of modelling methods for heat-related mortality Thumbnail


Authors

Dr SIMON GOSLING SIMON.GOSLING@NOTTINGHAM.AC.UK
Professor of Climate Risks and Environmental Modelling

David M. Hondula

Aditi Bunker

Dolores Ibarreta

Junguo Liu

Xinxin Zhang

Rainer Sauerborn



Abstract

Background: Multiple methods are employed for modelling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known on the relative sensitivity of impacts to “adaptation uncertainty” (i.e. the inclusion/exclusion of adaptation modelling), relative to using multiple climate models and emissions scenarios.
Objectives: (1) Compare the range in projected impacts that arises from using different adaptation modelling methods; (2) compare the range in impacts that arises from adaptation uncertainty to ranges from using multiple climate models and emissions scenarios; (3) recommend modelling method(s) to use in future impact assessments.
Methods: We estimated impacts for 2070-2099, for 14 European cities, applying six different methods for modelling adaptation; also with climate projections from five climate models, run under two emissions scenarios to explore the relative effects of climate modelling and emissions uncertainty.
Results: The range of the difference (%) in impacts between including and excluding adaptation, irrespective of climate modelling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modelling and emissions uncertainty.
Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modelling. We recommend absolute threshold shifts and reductions in slope.

Citation

Gosling, S. N., Hondula, D. M., Bunker, A., Ibarreta, D., Liu, J., Zhang, X., & Sauerborn, R. (2017). Adaptation to climate change: a comparative analysis of modelling methods for heat-related mortality. Environmental Health Perspectives, 125(8), Article 087008. https://doi.org/10.1289/EHP634

Journal Article Type Article
Acceptance Date Oct 24, 2016
Publication Date Aug 16, 2017
Deposit Date Nov 7, 2016
Publicly Available Date Aug 16, 2017
Journal Environmental Health Perspectives
Print ISSN 0091-6765
Electronic ISSN 1552-9924
Publisher National Institute of Environmental Health Sciences
Peer Reviewed Peer Reviewed
Volume 125
Issue 8
Article Number 087008
DOI https://doi.org/10.1289/EHP634
Public URL https://nottingham-repository.worktribe.com/output/877789
Publisher URL https://ehp.niehs.nih.gov/EHP634/
Additional Information Reproduced with permission from Environmental Health Perspectives

Files





You might also like



Downloadable Citations