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Abstract 41 

Background: Multiple methods are employed for modelling adaptation when projecting the 42 

impact of climate change on heat-related mortality. The sensitivity of impacts to each is 43 

unknown because they have never been systematically compared. In addition, little is known 44 

on the relative sensitivity of impacts to “adaptation uncertainty” (i.e. the inclusion/exclusion 45 

of adaptation modelling), relative to using multiple climate models and emissions scenarios. 46 

Objectives: (1) Compare the range in projected impacts that arises from using different 47 

adaptation modelling methods; (2) compare the range in impacts that arises from adaptation 48 

uncertainty to ranges from using multiple climate models and emissions scenarios; (3) 49 

recommend modelling method(s) to use in future impact assessments.  50 

Methods: We estimated impacts for 2070-2099, for 14 European cities, applying six different 51 

methods for modelling adaptation; also with climate projections from five climate models, 52 

run under two emissions scenarios to explore the relative effects of climate modelling and 53 

emissions uncertainty. 54 

Results: The range of the difference (%) in impacts between including and excluding 55 

adaptation, irrespective of climate modelling and emissions uncertainty, can be as low as 56 

28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities 57 

the ranges in projected impacts due to adaptation uncertainty are larger than those associated 58 

with climate modelling and emissions uncertainty. 59 

Conclusions: Researchers should carefully consider how to model adaptation because it is a 60 

source of uncertainty that can be greater than the uncertainty in emissions and climate 61 

modelling. We recommend absolute threshold shifts and reductions in slope. 62 

 63 
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Introduction  64 

One of the direct public health risks posed by climate change is increased heat-related 65 

mortality and morbidity (Gosling et al. 2012; Hajat et al. 2014; Hales et al. 2014; Kingsley et 66 

al. 2016; Peng et al. 2011; Petkova et al. 2013; Petkova et al. 2016; Sheridan et al. 2012; 67 

Vardoulakis et al. 2014; Wu et al. 2014), due to increased occurrences of cardiovascular and 68 

chronic respiratory causes (Huynen and Martens 2015; Martens 1998; McMichael et al. 69 

2006). Governments and community organisations around the world are increasingly 70 

allocating resources to prepare for a warmer future climate (Boeckmann and Rohn 2014). 71 

Central questions that should guide the decision-making process when making such 72 

investments include (1) what are the likely health impacts of possible changes? And (2) what 73 

are the interventions and programs, and scale thereof, that offer the highest probability of 74 

reducing the magnitude of any adverse impacts? Answers to these questions depend in part 75 

on the extent to which populations may adapt to future climate change.  76 

Adaptation mechanisms may occur through autonomous adaptation, such as physiological 77 

acclimatisation and a range of behavioural adaptations such as dressing appropriately during 78 

hot weather. They may also occur through planned adaptation, such as the introduction of 79 

government subsidies to increase air conditioning installations or the introduction of heat 80 

health warning systems, and public responses through health services such as changing 81 

prescription patterns and arranging home visits. Attempts to combine both autonomous and 82 

planned adaptation to represent the whole range of adaptation mechanisms, and then factor 83 

them in to quantitative assessments of the impact of climate change on heat-related mortality 84 

by statistical modelling, are largely based on liberal assumptions on the extent to which 85 

populations will adapt (Hayhoe et al. 2004; Honda et al. 2014b; Jenkins et al. 2014; 86 

Knowlton et al. 2007; Mills et al. 2014; Zacharias et al. 2015).  87 
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The potential to adapt is supported by a growing body of evidence that shows populations 88 

across the globe are becoming less sensitive to high temperatures, e.g. see reviews by 89 

Boeckmann and Rohn (2014) and Hondula et al. (2015). However, there is variation in the 90 

magnitude of the declines in sensitivity that have been observed between studies (e.g. Bobb et 91 

al. 2014; Schwartz et al. 2015; Todd and Valleron 2015), across locations (Gasparrini et al. 92 

2015a) and over time (Åström et al. 2016). There are also overall limits to adaptation (Smith 93 

et al. 2014; Woodward et al.) as, for example, air conditioning penetration reaches 100%, or 94 

physiological tolerance reaches biological limits. In addition, many studies neglect to unpick 95 

the factors that have driven declines in sensitivity to heat, and whether the declines are due to 96 

autonomous or planned adaptation (Petkova et al. 2014b). This precludes an understanding of 97 

what policies could help foster the most efficient adaptation practices. Multiple datasets on 98 

factors such as air conditioning penetration, human behaviour, activation of heat health 99 

warnings, and changes in health-care provision are needed to address this, but such datasets 100 

are rarely available at a sufficient temporal resolution (several decades) to elucidate the 101 

effects. The research needed to reveal these important insights will require an inter-102 

disciplinary approach that combines quantitative and qualitative methods. 103 

Variation in the magnitude of observed declines in sensitivity to heat has limited the ability of 104 

researchers to investigate the effects of adaptation assumptions on projections of the impact 105 

of climate change. Thus some researchers have not considered adaptation effects at all (e.g. 106 

Baccini et al. 2011; Hajat et al. 2014; Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et 107 

al. 2014; Wu et al. 2014). Such an approach, however, which ignores what we refer to here as 108 

“adaptation uncertainty” (i.e. the sensitivity of impacts to including and excluding adaptation 109 

modelling respectively), is acknowledged to likely over-estimate impacts (Huang et al. 2011; 110 

Martin et al. 2011; Petkova et al. 2013).  111 



6 
 

Within this context a number of impact assessments have accounted for adaptation 112 

uncertainty by representing adaptation statistically in the modelling process, suggesting that 113 

impacts could be up to 30-80% (Jenkins et al. 2014; Sheridan et al. 2012)  lower or more 114 

(Honda et al. 2014a) in the future with adaptation than without. Whilst the inclusion of 115 

adaptation may be considered an advantage over excluding it, because it accounts for likely 116 

autonomous and planned adaptation, it is important that the modelling methods are justified 117 

robustly with reference to empirical evidence. An arbitrary assumption that populations might 118 

adapt by 100% (Honda et al. 2014a), for instance, could lead to under-estimation of climate 119 

change impacts.  120 

 121 

Statistical methods for modelling adaptation 122 

A variety of different statistical methods have been used to model adaptation. Six main 123 

methods can be employed (Table 1). In all but one study, where three of the methods were 124 

applied in the Netherlands (Huynen and Martens 2015), the six methods have been applied 125 

independently and never compared quantitatively, although an interesting discussion of the 126 

methods is presented by Kinney et al. (2008). Our study is distinct from all previous work 127 

because we compare all six methods across multiple European cities and because we consider 128 

multiple assumptions in the magnitudes of potential adaptation systematically for each 129 

method.  We describe the six methods here and discuss their strengths and limitations. 130 

Two methods are based on shifting the threshold temperature of an epidemiological 131 

exposure-response function (ERF). Many different conceptualisations of threshold 132 

temperatures are presented in the literature, including minimum mortality temperatures, 133 

optimum temperatures, and other derivations related to statistical differences in relative risk 134 

between baseline and extreme conditions (see Åström et al. 2016; Honda et al. 2014b; Petitti 135 
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et al. 2016). Regardless of the specific statistical definition of the threshold, in general, the 136 

risks of heat-related mortality are lowest (or lower) at the threshold whilst for temperatures 137 

higher than the threshold there is a proportionally higher risk (e.g. Baccini et al. 2008).  138 

The “absolute threshold shift” method first defines the present-day threshold temperature in 139 

absolute terms (°C) and then increases it in the future. Assessments have assumed shifts of 140 

the ERF in the future by up to 2°C (Jenkins et al. 2014), 2.4°C (Huynen and Martens 2015), 141 

3°C (Dessai 2003) and 4°C (Gosling et al. 2008). This is perhaps the most straightforward 142 

method, which is why it has been used most frequently in previous studies. The magnitude of 143 

shift tends to be selected arbitrarily and justified with no reference to empirical evidence from 144 

epidemiological studies. 145 

The “relative threshold shift” method assumes “0% adaptation” when the threshold 146 

temperature in absolute terms (that is calculated originally as a percentile of the present-day 147 

daily temperature time series) is also used with the future time-series. “100% adaptation” is 148 

when the threshold temperature for the future is at the same percentile value as the present-149 

day (the absolute value will therefore be higher in a warmer climate). The midpoint of the 150 

threshold temperatures between 0% and 100% adaptation is “50% adaptation”. Previous 151 

assessments have assumed up to 50% (Zacharias et al. 2015) and 100% adaptation (Honda et 152 

al. 2014a; Honda et al. 2014b). A caveat of this method is that the magnitude of shifts 153 

employed in the studies that use this method, are based only upon changes in the threshold 154 

temperature observed in Tokyo between 1972-1994  (Honda et al. 2006). 155 

Temperature-mortality ERFs are typically described by linear or non-linear slopes that start 156 

from a threshold temperature. Accordingly the third adaptation modelling method reduces the 157 

slope of the ERF in the future. Huynen and Martens (2015) assumed a 10% reduction in 158 

linear slope using this method. This method is intuitive because it is plausible that 159 
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populations may become less sensitive to high temperatures under climate change, which 160 

would manifest as a reduction in the slope of the ERF. However, Huynen and Martens (2015) 161 

acknowledge that the 10% decline in slope they applied is hypothetical and they do not 162 

provide empirical evidence to support it. The method is straightforward to apply to a linear 163 

ERF but considerably more complicated for a non-linear ERF.  164 

The fourth and fifth methods combine shifts in the threshold with reductions in the slope. 165 

Huynen and Martens (2015) assumed a reduction in the slope of the ERF by 10% and 166 

combined this with absolute threshold shifts. No studies have yet combined a relative 167 

threshold shift with a reduction in slope, despite encouragement that studies should combine 168 

shifts with reductions in slope  (Huang et al. 2011). 169 

The sixth method uses “analogue ERFs”, i.e. ERFs derived for locations with temperatures 170 

similar to those projected to occur in the future in the location of interest. Whilst the method 171 

has been criticised (Kinney et al. 2008) and it assumes that the underlying confounding 172 

factors that contribute to the ERF can be transferred to a different location, it is popular 173 

(Hayhoe et al. 2004; Knowlton et al. 2007; Mills et al. 2014) because it draws upon 174 

epidemiological evidence that populations in warmer/colder regions tend to be less/more 175 

sensitive to relatively higher temperatures (Davis et al. 2003). 176 

A caveat that runs through all the methods employed in previous work is that they are not 177 

supported with reference to specific empirical evidence that confirms the magnitudes of 178 

adaptation assumed. The only exception is that the relative threshold shift method has been 179 

justified with reference to the observation that threshold temperatures can generally be 180 

estimated using the 80–85th percentile of daily maximum temperature in multiple locations in 181 

Japan (Honda et al. 2007; Honda et al. 2014b). It would of course be preferable to replicate 182 

this observation across other locations. A novel opportunity exists to develop adaptation 183 
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modelling methods based upon empirical evidence of historical adaptation because a growing 184 

body of evidence shows that in some cities and countries populations are becoming less 185 

sensitive to extremes of heat (Arbuthnott et al. 2016; Astrom et al. 2013; Åström et al. 2016; 186 

Bobb et al. 2014; Gasparrini et al. 2015b; Honda et al. 2006; Schwartz et al. 2015). The 187 

mechanisms associated with, and driving this decline, are a matter of debate, but it is clear 188 

from these studies that population sensitivity to heat can and does vary over time. It is 189 

somewhat surprising therefore that there has been no significant advancement in the 190 

statistical methods used to model adaptation over the past decade – the methods used over 10 191 

years ago are still being used now (Table 1). 192 

 193 

Current research gaps 194 

The application of multiple adaptation modelling methods across different climate change 195 

impact studies means that there is no clear understanding of the relative effects that each 196 

method can have on impacts. Nor is there a recommendation of what method is most 197 

appropriate for application (Huang et al. 2011). This is compounded by the general lack of 198 

rationale for the adaptation methods chosen in past studies. Some methods have been used 199 

more frequently than others, e.g. absolute threshold shifts (Table 1), perhaps because they are 200 

more straightforward to apply than some of the other methods.  201 

The use of different Global Climate Models (also known as General Circulation Models; 202 

GCMs) and emissions scenarios in climate change impact assessments enables an evaluation 203 

of the sensitivity of the impacts to “climate model uncertainty” and “emissions uncertainty” 204 

respectively (Gosling et al. 2012; Hajat et al. 2014; Peng et al. 2011; Zacharias et al. 2015). 205 

Whilst a limited number of impact studies have included multiple GCMs, emissions scenarios 206 

and adaptation assumptions altogether in the modelling exercise to account for these three 207 
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key uncertainties (Gosling et al. 2008; Petkova et al. 2016; Sheridan et al. 2012), such a 208 

holistic approach is uncommon (Huang et al. 2011). To this end little is known about the 209 

relative contributions of these three sources of uncertainty to ranges in projections of heat-210 

related mortality impacts. 211 

To address these important research gaps our study had three main objectives. Firstly, to 212 

conduct the first systematic comparison of the range in projected impacts that arises from 213 

using different adaptation modelling methods employed in previous studies; secondly, to 214 

compare the range in impacts that arises from adaptation uncertainty (i.e. impacts with the 215 

inclusion/exclusion of adaptation) to the ranges from climate modelling and emissions 216 

uncertainty respectively; and thirdly, to provide the first recommendation of one or several 217 

adaptation modelling methods to use in future impact assessments. 218 

 219 

Materials and Methods 220 

Experimental design 221 

Across 14 European cities (see Table 2) we estimated the mean annual warm season (1 April 222 

to 30 September) heat-related mortality rate attributable to climate change (ΔMort-CC), 223 

under the assumption that populations will not adapt in the future, i.e. “no adaptation”. We 224 

then estimated the impacts using six different methods for modelling adaptation respectively. 225 

In both cases the impacts were estimated using climate projections from one GCM 226 

(HadGEM2-ES) that was run under a single emissions scenario (Representative 227 

Concentration Pathway (RCP) 8.5), to control for the effects of climate modelling and 228 

emissions uncertainty. We chose RCP8.5 because it is the highest of the four RCP emissions 229 

scenarios commonly used in climate modelling (Riahi et al. 2011), meaning that it should a 230 
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priori enhance elucidation of the effects of modelling adaptation with different methods 231 

under a plausible emissions scenario. This approach enabled calculation of the range in 232 

impacts that arises from estimating them with adaptation and with no adaptation.   233 

We also estimated impacts with no adaptation, using climate projections from five GCMs run 234 

under RCP8.5 to explore the effect of climate modelling uncertainty whilst controlling for 235 

adaptation and emissions uncertainty. Furthermore, we estimated impacts with HadGEM2-ES 236 

run under low (RCP2.6) and high (RCP8.5) emissions scenarios respectively to explore the 237 

effect of emissions uncertainty whilst controlling for adaptation and climate modelling 238 

uncertainty. The experimental design is summarised in Table 3. 239 

The 14 cities were chosen because ERFs that were developed using the same methodology 240 

for each city were available (Baccini et al. 2008). This provided a consistent set of ERFs 241 

upon which to test the sensitivity of climate change impacts to adaptation assumptions.  242 

 243 

Climate change projections 244 

Time-series of daily maximum temperature (tmax), mean temperature (tmean) and mean relative 245 

humidity (RH) were extracted for the 0.5°x0.5° grid cells located closest to each city, for the 246 

present-day (1981-2010) and future (2070-2099), from five GCM simulations (HadGEM2-ES 247 

GCM, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2 and NorESM1-M). This set of 248 

GCMs has been used in numerous impact assessments to demonstrate the range in impacts 249 

that can arise from climate modelling uncertainty (Warszawski et al. 2014).  250 

Each GCM was run under RCP8.5 (high emissions) and RCP2.6 (low emissions) as these are 251 

the highest and lowest emissions scenarios commonly used in climate modelling that are 252 

available from the four RCP emissions scenarios (Riahi et al. 2011). By using the highest and 253 
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lowest we were able to investigate the maximum extent to which emissions scenario choice 254 

contributes to the uncertainty in projected heat-related mortality impacts.  255 

The climate variables were bias-corrected towards an observation-based dataset (Weedon et 256 

al. 2011), using an established method (Hempel et al. 2013), specifically designed to preserve 257 

long-term trends in temperature projections to facilitate climate change impact assessments. 258 

The GCM data could therefore be used for the present-day and future time periods in the 259 

impact assessment.  260 

The ERFs we used (Baccini et al. 2008) required daily maximum apparent temperature 261 

(ATmax), so this was computed as:  262 

      ATmax = -2.653 + 0.994.tmax + 0.0153.(td)
2      [1]  263 

Where td is daily mean dew point, which was computed from RH and tmean following Tetens 264 

(1930). For Barcelona, daily mean apparent temperature (ATmean) had to be calculated 265 

because the ERF for Barcelona required this instead of ATmax. Therefore we calculated daily 266 

ATmean by replacing tmax with tmean in [1]. 267 

 268 

Heat-related mortality estimation 269 

We applied city-specific linear ERFs derived from Baccini et al. (2008) for each of the 14 270 

cities. The ERFs describe linear relationships between daily ATmax (ATmean for Barcelona) 271 

and daily heat-related mortality in terms of Relative Risk (RR). RRs were reported by 272 

Baccini et al. (2008) as a percentage change in mortality per 1°C above the city-specific 273 

threshold temperature. We converted the RRs to RR ratios from: 274 

    percentage change = (RR - 1)*100    [2] 275 
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β, the concentration-response factor (CRF, the estimated slope of the linear relation between 276 

ATmax (ATmean for Barcelona) and daily heat-related mortality) was derived from: 277 

RR = expβΔT     [3] 278 

Where ΔT is a 1°C change in daily ATmax (ATmean for Barcelona) above the threshold 279 

temperature. The RRs, CRFs and threshold temperatures for each city are displayed in Table 280 

2. 281 

Daily heat-related mortality for each city was then calculated from the city-specific ERFs, for 282 

the present-day (1981-2010) and future (2070-2099) respectively. For the present-day and 283 

future we first calculated the daily attributable fraction, AF, which is the fraction of the 284 

mortality burden attributable to the risk factor ΔX (daily ATmax (ATmean for Barcelona) above 285 

the threshold temperature), for the exposed population. Following previous studies, it was 286 

assumed that the whole population at the threshold temperature is exposed (Huynen and 287 

Martens 2015; Knowlton et al. 2007; Schwartz et al. 2015; Vardoulakis et al. 2014): 288 

AF = 1 – exp–β.ΔX    [4] 289 

The AF was multiplied by the baseline daily mortality rate (y0, Table 2) and the exposed 290 

population (Pop, Table 2)to yield the absolute number of daily heat-related deaths (Mort) for 291 

the present-day and future respectively, using an established method (Hajat et al. 2014; 292 

Huynen and Martens 2015; Knowlton et al. 2007; Peng et al. 2011; Petkova et al. 2013; 293 

Schwartz et al. 2015; Vardoulakis et al. 2014; Wu et al. 2014), as: 294 

    Mort = y0.AF.Pop/100,000    [5] 295 

Mort was calculated  only for the warm season (1 April to 30 September) because the ERFs 296 

were derived for these months only (Baccini et al. 2008). ΔMort-CC was then calculated by 297 
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converting Mort into a mortality rate (per 100,000, using Pop) and then subtracting it for the 298 

present-day time period from the estimate for the future time period.  299 

We did not change y0 and Pop between time periods, in line with previous studies (e.g. 300 

Gosling et al. 2012; Petkova et al. 2013; Wu et al. 2014) because estimation of ΔMort-CC as 301 

a rate instead of absolute deaths facilitates comparisons across GCMs, emissions scenarios, 302 

different cities, and different methods for modelling adaptation. Application of population 303 

projection scenarios (e.g. the shared socio-economic pathways; SSPs; O’Neill et al. (2014)) 304 

would yield different absolute numbers of deaths between population scenarios but not 305 

different estimates of ΔMort-CC. 306 

 307 

Modelling adaptation 308 

We investigated the sensitivity of ΔMort-CC to the six main adaptation modelling methods 309 

we discussed earlier. ΔMort-CC was estimated for each of the 14 cities for each method 310 

separately (Table 3). 311 

Absolute threshold shifts in the ERF of 1, 2, 3 and 4°C respectively, were investigated to 312 

cover the range of shifts employed in past studies that use this method (Dessai 2003; Gosling 313 

et al. 2008; Huynen and Martens 2015; Jenkins et al. 2014). 314 

For relative threshold shifts we shifted the ERFs by 25, 50, 75 and 100% respectively, as this 315 

covers the range of values used in past studies (Honda et al. 2014a; Honda et al. 2014b; 316 

Zacharias et al. 2015). 317 

We reduced the slope of the ERF by 5, 10, 15, 20 and 25%, respectively. 10% was chosen in 318 

line with Huynen and Martens (2015) but as no other study has used this method we also 319 
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considered reductions of up to 25% to provide an indication of what might result from other 320 

assumed selected reductions in slope. 321 

Absolute threshold shifts (1, 2, 3 and 4°C) and relative threshold shifts (25, 50, 75 and 100%) 322 

were respectively combined with reductions in the slope of the ERF (5, 10, 15, 20 and 25%). 323 

Previous studies have paired locations for the analogue ERF method by comparing mean 324 

annual temperatures (Knowlton et al. 2007), mean summer temperatures (Hayhoe et al. 325 

2004), or maximum summer temperatures (Mills et al. 2014) between present-day and future 326 

time periods for multiple locations, but this does not account for the whole statistical 327 

distribution of temperatures. This is a significant limitation because it is the extremes of 328 

temperature, as well as the mean, which are important for heat-related mortality.  329 

Therefore we developed a more advanced approach that better accounts for the shapes of the 330 

temperature distributions between two cities. We created analogue city pairs based on the 331 

projected probability distribution functions (PDFs) of warm season daily ATmax. The best 332 

“match” for each city’s future climate was determined by a comparison of the nonparametric 333 

Kolmogorov-Smirnov (K-S) test statistic (Massey 1951) between present-day and future 334 

temperature distributions. The K-S test statistic is a measure of the maximum distance 335 

between two continuous distribution functions. For 13 cities (Barcelona was excluded here 336 

because it was the only city not to use ATmax in its ERF), the city whose present-day 337 

distribution that had the lowest test statistic when compared to an individual city’s future 338 

distribution was selected as a match. For example, the projected climate of London was found 339 

to be most similar to that of present-day Milan (out of the 12 possible options) (Figure 1, 340 

Table S1), and thus ΔMort-CC for London was computed using the London climate change 341 

projections as input to the Milan ERF. 342 

 343 
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Results 344 

Comparison of impacts between adaptation modelling methods  345 

Figure 2 shows the range in ΔMort-CC impacts (per 100,000) for each city that result from 346 

including and excluding adaptation, and Figure 3 shows the difference (%) in impacts 347 

between including and excluding adaptation, for each adaptation modelling method. These 348 

two figures show that there are large contrasts in the ranges of impacts between the different 349 

adaptation modelling methods.  350 

The contrasts are brought out in Table 4, which shows, as a mean across all 14 cities, the 351 

range of the difference (%) in impacts between including and excluding adaptation. The 352 

ranges are 49% (absolute threshold shift), 94% (relative threshold shift), 28% (reduction in 353 

slope of the ERF), 68% (absolute threshold shift combined with a reduction in slope of the 354 

ERF), 103% (relative threshold shift combined with a reduction in slope of the ERF) and 355 

76% (analogue ERF). 356 

Combining a relative threshold shift with a reduction in the ERF is associated with the largest 357 

ranges in impacts across all the methods, for all cities except Valencia. Relative threshold 358 

shifts are associated with the second largest ranges in impacts. For example, with relative 359 

threshold shifts of 50% (100%), ΔMort-CC declines from 84, 79, 72 and 77 deaths per 360 

100,000 respectively under no adaptation, to 43 (6), 41 (9), 29 (0) and 37 (3) with adaptation, 361 

for Athens, Budapest, Milan and Rome, respectively (Figure 2). In terms of the difference 362 

(%) in impacts between including and excluding adaptation (Figure 3), these are equivalent to 363 

49% (93%), 48% (89%), 60% (100%) and 52% (96%) respectively (Figure 3). In 5 cities a 364 

relative threshold shift of 100% results in ΔMort-CC reaching zero (London, Milan, Paris, 365 

Stockholm, Turin), i.e. climate change has no effect on heat-related mortality with adaptation. 366 
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Across the methods we considered, the smallest ranges in impacts are with reducing the slope 367 

of the ERF. For all cities, the differences in impacts between adaptation and no adaptation are 368 

smaller than 40% when the slope is reduced by the maximum amount we considered (25% 369 

reduction in slope; see Figure 3). 370 

The methods we investigated generally have similar effects on ΔMort-CC across cities, i.e. 371 

increasing the thresholds in the increments we considered from 0-4°C and 0-100%, and 372 

reducing the slope by 0-25% respectively, are all associated with broadly linear declines in 373 

ΔMort-CC as the magnitude of assumed adaptation increases (Figure 2). The analogue ERF 374 

method, however, results in more disparate estimates of ΔMort-CC. There are large 375 

differences between adaptation and no adaptation for some cities. For Ljubljana and London, 376 

ΔMort-CC is 36 and 19 deaths per 100,000 (no adaptation) and 2 and 6 deaths per 100,000 377 

(with adaptation), respectively (Figure 2). This is equivalent to differences of 94% 378 

(Ljubljana) and 68% (London) between adaptation and no adaptation (Figure 3). However, 379 

for other cities the use of analogue ERFs results in greater ΔMort-CC with adaptation than 380 

without, e.g. for Stockholm, Turin and Valencia where ΔMort-CC is 16, 11 and 13 deaths per 381 

100,000 without adaptation and 20, 20 and 92 with adaptation, respectively (Figure 2). 382 

 383 

Comparison of adaptation, emissions and climate modelling uncertainty  384 

Table 5 shows the effects of adaptation, emissions and climate modelling uncertainties on 385 

projected impacts. It compares the largest range in impacts from all the adaptation modelling 386 

methods we investigated with the range in impacts from using two emissions scenarios 387 

without adaptation, and the range in impacts with 5 GCMs with one emissions scenario 388 

without adaptation respectively. The range in impacts that arises from adaptation modelling 389 

uncertainty is greater than the range that arises due to emissions uncertainty for every city. It 390 
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is also greater than the range due to climate modelling uncertainty for 13 out of 14 cities. 391 

These differences are considerable in some cases, e.g. for Athens, Budapest and Rome, the 392 

ranges due to adaptation uncertainty are 88, 80 and 80 whilst for climate modelling 393 

uncertainty they are 46, 57 and 45 deaths per 100,000 respectively. 394 

The large ranges due to adaptation uncertainty are in all but one city (Helsinki) associated 395 

with a relative threshold shift combined with a reduction in ERF slope (Table 5). However, 396 

even for Helsinki, adaptation uncertainty still results in a magnitude of impact that falls 397 

outside of the distribution of impacts estimated from multiple climate models and emissions 398 

scenarios.  Application of some of the other methods also results in ranges that are larger than 399 

those from climate modelling and emissions uncertainty (denoted by Ax in Figure 2) because 400 

for 12 cities Ax is greater than or equal to 2, with such cases usually involving the relative 401 

threshold shift method. 402 

The range in impacts from using an absolute threshold shift is smaller than the range from 403 

using multiple GCMs and/or RCPs, for all cities. The ranges are larger when absolute 404 

threshold shifts are combined with reductions in ERF slope but apart from three cities 405 

(Athens, Barcelona, Valencia) the ranges are smaller than those from using multiple GCMs 406 

or RCPs.  407 

With exception to Ljubljana and Valencia the range in impacts from using analogue ERFs is 408 

smaller than the range from using multiple GCMs and multiple RCPs, for all cities. 409 

 410 

Discussion 411 

Application of linear ERFs 412 
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We used city-specific ERFs that describe linear relationships between daily apparent 413 

temperature and mortality in the form of a slope. They were derived from a set of non-linear 414 

curves developed from a flexible parametric approach presented by Baccini et al. (2008) 415 

(their Figure 1). Baccini et al. (2008) summarised their non-linear relationships by two linear 416 

terms constrained to join at a common point (the city-specific thresholds). They obtained the 417 

thresholds by the maximum likelihood approach proposed by Muggeo (2003) so that a linear 418 

slope above the threshold was used as an effect estimate for each city. These were used as the 419 

ERFs in our study. As others have noted (Kingsley et al. 2016), the summarised association 420 

between mortality and temperature per increment in temperature (1°C in this case) differs 421 

depending on where along the exposure–response curve one starts, for nonlinear exposure–422 

response relationships like those defined by Baccini et al. (2008). For a highly non-linear 423 

curve, the strength of the temperature-mortality response might be higher further along the 424 

curve where its gradient is larger (i.e. at higher temperatures) than it might be closer to the 425 

threshold where the gradient is lower. Baccini et al. (2008) started from the threshold 426 

temperature when computing their effect estimates, so if their curves were highly non-linear, 427 

it would be fair to assume that we under-estimated the climate change effects of temperature 428 

on heat-related mortality. However, visual inspection of the curves presented by Baccini et al. 429 

(2008) suggests that the curves are broadly linear beyond the threshold temperatures. 430 

Therefore we did not calculate climate change impacts with non-linear ERFs.  431 

A goal of our paper is to provide a point of reference to the sensitivity of climate change 432 

impacts to different adaptation modelling methods, for researchers conducting climate change 433 

impact assessments for heat-related mortality. Considering that almost all previous 434 

assessments use linear ERFs derived from estimates of RR for an increase in temperature 435 

above a specific value (Baccini et al. 2011; Hajat et al. 2014; Peng et al. 2011; Petkova et al. 436 

2013; Schwartz et al. 2015; Vardoulakis et al. 2014; Wu et al. 2014) we also used linear 437 
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ERFs because it is likely that future studies will also do so. Thus our conclusions should be 438 

readily interpretable by the community. This is another reason why we did not calculate 439 

impacts with non-linear ERFs. In addition, the application of linear ERFs makes it 440 

straightforward to apply simple changes in slope and location to represent adaptation. The 441 

potential gains of using non-linear associations would be outweighed by the increased 442 

complexity in implementing adaptation options.  443 

The algorithm described by Muggeo (2003) and used by Baccini et al. (2008) for the  444 

threshold temperature estimation can be unstable. This means the linear relationship we used 445 

can be sensitive to the threshold. We did not investigate the sensitivity of our estimated 446 

impacts to this because our goal was to demonstrate the sensitivity of impacts to adaptation 447 

methods. The drawback of this algorithm may be accounted for by using different starting 448 

points for each temperature and lag structure when running the algorithm (Rodopoulou et al. 449 

2015). 450 

Our projected impacts are not only a function of the projected climate, but also of the 451 

baseline mortality rate, which appears in Equation (5). The sensitivity of impacts to baseline 452 

mortality values has been noted by others (Baccini et al. 2011). We controlled for this in our 453 

experimental design by holding the baseline mortality rate constant between present and 454 

future periods, in line with others (e.g. Gosling et al. 2012; Peng et al. 2011; Petkova et al. 455 

2013; Wu et al. 2014), to isolate the effects of climate model, emissions, and adaptation 456 

modelling uncertainties on the impact estimates. Changing the baseline mortality rates 457 

between future and present would affect the projected absolute number of deaths, since some 458 

future deaths would be attributable to changes in the baseline mortality rate, but it would not 459 

affect the mortality rates attributable to climate change (ΔMort-CC).  460 
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Some studies have calculated the baseline mortality rate from either daily mortality excluding 461 

deaths attributable to temperature (Hajat et al. 2014), or mortality on non-heatwave days 462 

(Peng et al. 2011; Wu et al. 2014). This means that the baseline mortality rate is 463 

representative of the mortality rate of the exposed population at the threshold temperature. 464 

Others have calculated the baseline mortality rate from the total number of deaths (Baccini et 465 

al. 2011; Huynen and Martens 2015; Petkova et al. 2013; Schwartz et al. 2015; Vardoulakis 466 

et al. 2014), which means it is representative of the whole exposed population year-round (i.e. 467 

at the threshold temperature and temperatures above this). We employed the last approach, 468 

simply because it is more commonly adopted, but we acknowledge that it would be useful in 469 

future work to investigate quantitatively the effect of calculating the baseline mortality rate 470 

with different methods. 471 

 472 

Impacts are highly sensitive to adaptation modelling methods 473 

Our first objective was to compare the range in projected impacts that arises from using 474 

different adaptation modelling methods. All previous assessments of the impacts of climate 475 

change on heat-related mortality have modelled adaptation with only one method (e.g. 476 

Hayhoe et al. 2004; Honda et al. 2014b; Jenkins et al. 2014; Knowlton et al. 2007; Mills et al. 477 

2014; Zacharias et al. 2015), excluded it altogether (e.g. Baccini et al. 2011; Hajat et al. 2014; 478 

Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et al. 2014; Wu et al. 2014), or in one 479 

case provided a comparison of impacts using only a subset of the range of modelling methods 480 

available (Huynen and Martens 2015). Here, for the first time, we have used multiple 481 

adaptation modelling methods with different assumed magnitudes of adaptation and shown 482 

that the ranges in projected impacts varies significantly according to what adaptation 483 

modelling method is employed. 484 
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This significant sensitivity is well illustrated with an example. Electing to model adaptation 485 

with a 4°C absolute threshold shift for Milan would suggest that the least effect climate 486 

change will have on heat-related mortality is an additional 44 heat-related deaths (per 487 

100,000) each year than in the present day (Figure 2). However, modelling adaptation with a 488 

different method (relative threshold shift with a reduction in ERF slope) suggests that there 489 

will be 2 (per 100,000) fewer deaths each year with climate change than in the present-day. 490 

This magnitude of impact is only observed if this specific adaptation modelling method is 491 

applied. Such an effect does not occur with any of the other adaptation modelling methods. 492 

Nor does it occur under a low emissions (RCP2.6) scenario or when multiple GCMs are 493 

considered without adaptation, where the least effect climate change will have on heat-related 494 

mortality is an additional 17 and 31 annual heat-related deaths (per 100,000) respectively. 495 

To this end our results highlight that forthcoming studies need to carefully consider what 496 

methods they use to model adaptation because we have shown the range in projected impacts 497 

is highly sensitive to what adaptation modelling method is employed. 498 

We observed that increases in the magnitude of each adaptation modelling method (apart 499 

from analogue ERF) generally had linear effects on ΔMort-CC that were similar across cities 500 

(Figure 2). This suggests that the sensitivity of projected heat-related mortality impacts to 501 

adaptation modelling method is likely to hold for other cities across the globe.  502 

 503 

Comparing uncertainty from adaptation uncertainty with that from climate modelling 504 

and emissions 505 

Our second objective was to compare the range in impacts that arises from adaptation 506 

uncertainty to the ranges from climate modelling and emissions uncertainty respectively. We 507 
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found that adaptation modelling uncertainty results in large ranges of projected heat-related 508 

mortality impacts. In 13 out of 14 cities it results in ranges that are larger than those caused 509 

by both climate modelling and emissions uncertainty respectively. This is largely as a result 510 

of modelling adaptation with relative threshold shifts. When other methods are used the 511 

ranges are still large but typically smaller than those from climate modelling and emissions 512 

uncertainty. Our results confirm other studies that have shown large differences in impacts 513 

between adaptation and no adaptation cases (e.g. Honda et al. 2014a; Jenkins et al. 2014; 514 

Petkova et al. 2016; Sheridan et al. 2012) but here we have provided additional understanding 515 

by specifically showing that adaptation uncertainty can have a greater effect on heat-related 516 

mortality rates attributable to climate than climate modelling and emissions uncertainty. 517 

  518 

Recommended adaptation modelling methods for future assessments 519 

Our third objective was to recommend one or several methods to use in future impact 520 

assessments. Our results lead us to advise that future assessments should carefully consider 521 

the plausibility of the adaptation modelling methods they employ when projecting heat-522 

related mortality. 523 

Absolute threshold shifts are a popular method for modelling adaptation in impact studies but 524 

they have always been shifted by between 1-4°C without being informed by  epidemiological 525 

evidence of observed threshold shifts (Dessai 2003; Gosling et al. 2008; Huynen and Martens 526 

2015; Jenkins et al. 2014). However, there is now growing evidence to support the magnitude 527 

of these shifts. Absolute threshold temperatures increased by 1.5-3°C between 1972-1994 in 528 

Tokyo (Honda et al. 2006), by around 10°C between 1901-2009 in Stockholm (Åström et al. 529 

2016) and by 0.7°C from 1968–1981 to1996–2009 in France (Todd and Valleron 2015). 530 

Although observed increases in thresholds vary between studies, have occurred over different 531 
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time periods, and thresholds have decreased in a limited number of locations (Miron et al. 532 

2007), we argue that it is reasonable in light of the epidemiological evidence to assume that 533 

ERFs might shift by between 1-4°C in the future. Thus we recommend this method for 534 

application in future impact studies. However, we also encourage further epidemiological 535 

studies that investigate the magnitude of historical shifts in absolute threshold temperatures 536 

and in addition improved empirical assessment of the factors that drive such shifts in 537 

sensitivity and their associated costs.  538 

Users of the relative threshold method (Honda et al. 2014a; Honda et al. 2014b; Zacharias et 539 

al. 2015) justify its application with reference to the observation that threshold temperatures 540 

can generally be estimated using the 80–85th percentile of daily maximum temperature in 541 

multiple locations in Japan (Honda et al. 2007; Honda et al. 2014b). However, relative 542 

thresholds can vary over time (Åström et al. 2016) and between countries (Gasparrini et al. 543 

2015a), which questions the rationale behind this method. The method has also been 544 

criticised for its inappropriateness for projecting climate change impacts because the relative 545 

threshold may not be a valid proxy for the absolute threshold in the future (Åström et al. 546 

2016). In addition, referring to “100% adaptation” (Honda et al. 2014a) is somewhat 547 

misleading because we have shown that climate change still causes an increase in heat-related 548 

mortality compared to present-day under this assumption. This is because the shape and 549 

location of the future temperature distribution changes but a relative threshold shift of 100% 550 

does not entirely account for the change in shape.  In light of these limitations the method 551 

should be applied with caution and relative threshold shifts of 100% should be carefully 552 

considered with respect to their plausibility. 553 

Our results confirm criticisms that impacts based on the analogue ERF method may be biased 554 

if social, economic, and demographic characteristics related to mortality differ greatly 555 

between city pairs (Huang et al. 2011). Application of this method in our study did not 556 
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always have the effect of reducing mortality relative to no adaptation (e.g. for Milan, 557 

Stockholm, Turin, Valencia, and Zurich). One reason for this is that the method is sensitive to 558 

the “matching” of one city to another – some matches were better than others. Another reason 559 

is the cities were matched based only upon their daily ATmax distributions and not the socio-560 

economic characteristics that contribute to the thresholds and slopes of the city-specific ERFs 561 

(Baccini et al. 2008). The method might work well for locations that share similar socio-562 

economic characteristics but not otherwise. Therefore we recommend that future impact 563 

studies consider whether it is plausible to apply the analogue ERF method when taking into 564 

account similarities and differences between the socio-economic characteristics of the 565 

different locations under investigation.  566 

We are aware of only one impact study that has modelled adaptation by reducing the slope of 567 

the ERF (Huynen and Martens 2015), which is surprising considering the growing body of 568 

epidemiological evidence that generally shows a decreasing sensitivity to heat over time 569 

(Barnett 2007; Bobb et al. 2014; Gasparrini et al. 2015a; Guo et al. 2012; Ha and Kim 2013; 570 

Petkova et al. 2014a; Schwartz et al. 2015; Sheridan et al. 2008). Along with others (Huang et 571 

al. 2011), we therefore see this method as showing significant potential for application in 572 

impact studies.  573 

Overall, we recommend that future impact studies model adaptation by absolute threshold 574 

shifts and reductions in ERF slope. This should, however, not be done arbitrarily. We suggest 575 

that researchers first check the validity of the magnitude of adaptation assumed by exploring 576 

the evidence for, and magnitude of, historical adaptation in the chosen location of 577 

investigation. This should yield quantification of shifts in the threshold temperature and 578 

declines in slope over the historical period. The analysis should be performed using as long a 579 

time-series of daily data that is possible, ideally spanning around 100 years because the most 580 

compelling evidence for adaptation over the historical period is from studies that have 581 
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analysed datasets of this length (Arbuthnott et al. 2016; Astrom et al. 2013; Carson et al. 582 

2006; Ha and Kim 2013; Petkova et al. 2014a). If adaptation is not observed over the 583 

historical period and/or there is a lack of available data, then it should not be assumed that 584 

future adaptation is impossible. Rather, the reasons for this should be investigated and 585 

adaptation modelling should be undertaken. We recommend applying a shift in absolute 586 

threshold between 1-4°C in such cases because this is broadly within the range of shifts in 587 

threshold temperature observed for some locations (Åström et al. 2016; Honda et al. 2006; 588 

Todd and Valleron 2015). However, the results should be interpreted within the knowledge 589 

that historical adaptation has not occurred and/or there was not enough available data to 590 

observe it. Analysis of historical trends in adaptation will indicate whether both the threshold 591 

and slope have changed over time, or whether only one has. This in turn should inform which 592 

method to use in the climate change impact assessment. 593 

We assumed in our comparison that the methods employed in previous studies for particular 594 

locations could readily be transferred to different locations. Previous studies that have used 595 

these methods have also made this assumption. Apart from the analogue ERF method, which 596 

we have shown may not be a plausible method for some locations, our results suggest no 597 

reason why the methods cannot be applied to locations that are different from where they 598 

have been used previously. However, as we have already noted, when using these methods 599 

for a new location, researchers should check the validity of the assumed magnitude of 600 

adaptation, by exploring historical adaptation trends for that location.Whilst our 601 

recommendation is based upon an analysis of existing methods we also encourage the 602 

development of new methods for modelling adaptation across large populations. These might 603 

include shifts and declines in slope where the magnitudes vary seasonally or inter-annually, 604 

to reflect the lead-in times that typify decreasing sensitivity to heat over the historical period 605 

(Arbuthnott et al. 2016; Petkova et al. 2016). It would also be worthwhile to attempt to 606 
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separate the beneficial effects of autonomous adaptation from planned adaptation (Petkova et 607 

al. 2014b) because all the methods we employed combine the two together. In practical 608 

terms, it is likely that the two mechanisms will operate at different magnitudes, 609 

heterogeneously across locations, and at different spatial and temporal scales. 610 

 611 

Conclusions  612 

To the best of our knowledge, we have conducted the first climate change impact assessment 613 

for heat-related mortality that systematically compares projections using the six main 614 

methods for modelling adaptation that have been employed in previous studies.  615 

We found that on average across all 14 cities, the range of the difference (%) in impacts 616 

between including and excluding adaptation, independent of climate modelling and emissions 617 

uncertainty, can be as low as 28% with one method (reduction in slope of the ERF) and up to 618 

103% with another (relative threshold shift combined with a reduction in slope of the ERF). 619 

Furthermore, we have shown that in 13 of the 14 cities the ranges in projected impacts due to 620 

adaptation uncertainty are larger than those associated with climate modelling and emissions 621 

uncertainty.  622 

Therefore we strongly encourage an advancement beyond the prevailing methodological 623 

approach adopted in most impact studies, which has traditionally focussed on accounting for 624 

climate modelling and/or emissions uncertainties at the expense of ignoring adaptation (e.g. 625 

Baccini et al. 2011; Hajat et al. 2014; Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et 626 

al. 2014; Wu et al. 2014). This status quo has developed from an inherent assumption that the 627 

most important uncertainties to account for are climate modelling and emissions uncertainty, 628 
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as they have been shown to result in large ranges in impacts (e.g. Gosling et al. 2012; Hajat et 629 

al. 2014; Peng et al. 2011; Zacharias et al. 2015). Our results are in stark contrast to this.  630 

Therefore researchers should carefully consider how to model adaptation. We call for a move 631 

towards impact assessments that explicitly report the range in impacts from using multiple 632 

GCMs, emissions scenarios and different adaptation assumptions, to provide a more 633 

comprehensive assessment of uncertainty. This will in turn provide policy- and decision-634 

makers with a more holistic picture of potential climate change impacts. Ideally, this will help 635 

decision-makers adopt the appropriate scale and combination of different investments and 636 

interventions required for effective adaptation to climate change. 637 

We treated adaptation in a purely statistical sense, without consideration of the specific 638 

programs, strategies and behavioural changes that are ultimately driving the adaptation 639 

assumptions we applied. More thorough and widespread evaluation of intervention measures 640 

will be paramount in closing this loop (Boeckmann and Rohn 2014). Therefore in parallel to 641 

our recommendations for future research we acknowledge that more evidence should be 642 

generated on the costs and effectiveness of the large array of adaptation mechanisms that 643 

underlay the modelling assumptions we applied here, from individual, technological to health 644 

system levels. This would enable policy- and decision-makers to focus on the most cost-645 

effective interventions and researchers to base their adaptation methods on more robust data.  646 
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Figures 647 

 648 

Figure 1. PDFs of present-day ATmax distributions for each city (solid black line), the future 649 

distribution under climate change as simulated by HadGEM2-ES under RCP8.5 for the same 650 
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city (dashed black line) and all other cities (solid thin grey lines), and for the same city the 651 

distribution for the city that under climate change is best matched to it (solid thick grey line) 652 

according to the K-S statistic (displayed in the top right of each panel; K-S statistics for all 653 

possible matches are displayed in Table S1). 654 
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 655 

Figure 2. Mean annual warm season heat-related mortality rates (per 100,000) attributable to 656 

climate change (ΔMort-CC) for 2070-2099, using climate change projections from 657 

HadGEM2-ES run under RCP8.5, when different adaptation modelling methods are applied. 658 
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Also displayed is ΔMort-CC with climate change projections from five GCMs run under 659 

RCP8.5 with no adaptation (“GCMs”), and ΔMort-CC with climate change projections from 660 

HadGEM2-ES run under two emissions scenarios (RCP2.6 and RCP8.5) with no adaptation 661 

(“RCPs”). Blue lines and whiskers denote where impacts have been estimated with 662 

adaptation modelling methods employed and red lines and whiskers with no adaptation. Ax 663 

denotes the number of adaptation modelling methods that have a range which is greater than 664 

or equal to the range for GCMs and/or RCPs. The ranges are quantitatively summarised in 665 

Table 4.  666 

 667 
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 680 

Figure 3. Differences (%) between estimating ΔMort-CC with each adaptation modelling 681 

method and with no adaptation. All estimates are for 2070-2099, with climate change 682 

projections from the HadGEM2-ES GCM run under RCP8.5. The axis labels are the same as 683 

in Figure 2. Notes: this is not a stacked bar graph – values should be read from the left (right) 684 
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of each box if they are left (right) of 0. No analogue projection is available for Athens 685 

because the city was its own match in the comparison of current and future temperature 686 

distributions; no analogue projection is available for Barcelona because a different exposure 687 

variable was used for projections for Barcelona than the other study cities.  688 
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Tables 
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Table 1. Summary of statistical methods used to model adaptation in climate change impact assessments for heat-related mortality. 

 

Method Summary Strengths Limitations Studies that use the method 

Absolute threshold 

shift. 

The absolute threshold temperature is 

shifted to a higher value under 

climate change, between 2-4°C. 

Straightforward to apply. 

Magnitude of shift is 

arbitrarily defined without 

reference to epidemiological 

evidence. 

Dessai (2003) 

Gosling et al. (2008) 

Huynen and Martens (2015) 

Jenkins et al. (2014) 

Relative threshold 

shift. 

The threshold, when defined as a 

percentile of the temperature 

distribution, is the same percentile 

under climate change as it is in the 

present (100% adaptation). 

Straightforward to apply and 

supported by some (limited) 

empirical evidence. 

Informed by evidence from 

only a single empirical study 

(Honda et al. 2006). 

Honda et al. (2014a)  

Honda et al. (2014b) 

Zacharias et al. (2015) 

Reduction in slope 

of the exposure 

response function 

(ERF). 

The slope of the ERF is reduced 

under climate change, by up to 10%. 
Straightforward to apply. 

Magnitude of slope reduction 

is arbitrary and not 

straightforward to apply to 

non-linear ERFs. 

Huynen and Martens (2015) 

Combined absolute 

threshold shift with 

reduction in slope 

of the ERF. 

The absolute threshold temperature is 

shifted to a higher value under 

climate and at the same time the 

slope of the ERF is reduced. 

Intuitive because it assumes that 

both the threshold and 

sensitivity to increasing heat 

will change under climate 

change. 

Magnitude of shift and slope 

reduction is arbitrary and not 

straightforward to apply to 

non-linear ERFs. 

Huynen and Martens (2015) 

Combined relative 

threshold shift with 

reduction in slope 

of the ERF. 

The relative threshold temperature is 

shifted to a higher value under 

climate and at the same time the 

slope of the ERF is reduced. 

Intuitive because it assumes that 

both the threshold and 

sensitivity to increasing heat 

will change under climate 

change. 

Magnitude of shift and slope 

reduction is arbitrary and not 

straightforward to apply to 

non-linear ERFs. 

Recommended by Huang et al. 

(2011) but not yet used in a 

climate change impact 

assessment. 

Analogue ERFs. 

Use ERFs for locations with present 

temperatures similar to those 

projected to occur in the location of 

interest under climate change. 

 

Qualitatively informed by 

epidemiological evidence that 

populations in warmer/colder 

regions tend to be less/more 

sensitive to relatively higher 

temperatures (Davis et al. 2003). 

Assumes that the underlying 

confounding factors that 

contribute to the ERF can be 

transferred to a different 

location. 

Hayhoe et al. (2004) 

Knowlton et al. (2007) 

Mills et al. (2014) 
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Table 2. Components of the ERFs applied in this study, which are based upon model estimates derived by Baccini et al. (2008). 

City Threshold 
temperature 

(°C) 

Total 
population 

Baseline 
daily 

mortality 
rate (per 
100,000) 

Relative 
Risk (RR) 

Concentration 
Response 

Factor (CRF) 

Athens 32.7 3188305 2.12 1.0554 0.054 
Barcelona 22.4 1512971 2.37 1.0156 0.015 
Budapest 22.8 1797222 3.95 1.0174 0.017 
Helsinki 23.6 955143 1.79 1.0372 0.037 

Ljubljana 21.5 263290 2.39 1.0134 0.013 
London 23.9 6796900 2.19 1.0154 0.015 
Milan 31.8 1304942 2.02 1.0429 0.042 
Paris 24.1 6161393 1.88 1.0244 0.024 

Prague 22 1183900 2.95 1.0191 0.019 
Rome 30.3 2812573 1.88 1.0525 0.051 

Stockholm 21.7 1173183 2.38 1.0117 0.012 
Turin 27 901010 2.12 1.0332 0.033 

Valencia 28.2 739004 1.98 1.0056 0.006 
Zurich 21.8 990000 1.17 1.0137 0.014 
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Table 3. Summary of the experimental design, showing the adaptation modelling methods compared and the GCMs and emissions scenarios 

used.  

Rationale: Range in impacts from adaptation uncertainty, controlling for climate modelling and emissions uncertainty 

Range in impacts 
from climate 

modelling 
uncertainty, 

controlling for 
adaptation and 

emissions 
uncertainty 

Range in impacts 
from emissions 

uncertainty, 
controlling for 

adaptation and 
climate modelling 

uncertainty 

GCMs:  HadGEM2-ES 

HadGEM2-ES, IPSL-
CM5A-LR, MIROC-
ESM-CHEM, GFDL-
ESM2, NorESM1-M 

HadGEM2-ES 

Emissions 
scenarios: 

RCP8.5 RCP8.5 RCP2.6, RCP8.5 

No. of climate 
model 

simulations:  
1 1 1 1 1 1 1 5 2 

Adaptation 
modelling 
method: 

No 
adaptation 

Absolute 
threshold 

shift  
(“Thresh 

°C”) 

Relative 
threshold 

shift 
 (“Thresh 

%”) 

Reduction 
in slope of 

the ERF 
(“Slope”) 

Combined 
absolute 

threshold shift 
with reduction in 

ERF slope  
(“Thresh °C + 

Sens”) 

Combined 
relative threshold 

shift with 
reduction in  ERF 

slope 
(“Thresh % + 

Sens”) 

Analogue 
ERFs  

(“Analogue”) 
No adaptation No adaptation 

Magnitude of 
adaptation 

investigated: 
None 

1°C 25% 5% 

All 20 possible 
combinations 

All 20 possible 
combinations 

Use ERF 
from 

analogue 
city 

None None 

2°C 50% 10% 

3°C 75% 15% 

4°C 100% 20% 

 25% 
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Table 4. Statistical ranges (maximum minus minimum values of the distribution) of the 

differences (%) between estimating ΔMort-CC with the upper limit of each adaptation 

modelling method (shown in parentheses) and with no adaptation. The values describe the 

width of each bar in Figure 3.  

City Absolute 
threshold 

shift 
(Thresh °C 

= 4°C) 

Relative 
threshold 

shift 
(Thresh % 
= 100%) 

Reduction 
in the 

slope of 
the ERF 
(Slope = 

25%) 

Absolute 
threshold 

shift 
combined 

with 
reduction in 
slope of ERF 
(Thresh °C + 
Sens = 4°C+ 

25%) 

Relative 
threshold 

shift 
combined 

with 
reduction in 
slope of ERF 
(Thresh % + 
Sens = 100% 

+ 25%) 

Analogue 
ERF 

(Analogue) 

Athens 44 93 27 66 105 0 

Barcelona 48 89 36 72 106 0 

Budapest 42 89 32 66 101 15 

Helsinki 61 96 26 74 100 48 

Ljubljana 40 89 28 58 97 94 

London 58 100 26 74 105 68 

Milan 37 100 24 54 103 13 

Paris 51 100 27 67 106 33 

Prague 43 89 30 64 100 41 

Rome 42 96 26 60 104 22 

Stockholm 62 100 25 75 100 25 

Turin 79 100 18 82 100 82 

Valencia 45 85 38 77 108 608 

Zurich 40 94 25 63 100 13 

Mean 49 94 28 68 103 76 a 

a   The mean is 35 if the result 608 for Valencia is removed.  
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Table 5. Statistical ranges (maximum minus minimum values of the impact distribution) and 

spread (minimum to maximum values that constitute the range, in parentheses) of ΔMort-CC 

impacts (per 100,000) due to adaptation modelling uncertainty (calculated from the largest 

range in impacts from all the adaptation modelling methods investigated), climate modelling 

uncertainty (spread and range for 5 GCMs with no adaptation) and emissions uncertainty 

(spread and range for two RCPs with one GCM and with no adaptation). The range values 

describe the width of each bar in Figure 2. 

City Range in impacts due 
to adaptation 

modelling uncertainty a 

Adaptation 
modelling method 

that results in 
largest spread 

Range in impacts 
due to climate 

modelling 
uncertainty 

Range in impacts due 
to emissions 
uncertainty 

Athens 88  (-4 – 84) Thresh % + Slope 46  (46 – 92) 54  (30 – 84) 

Barcelona 38  (-2 – 36) Thresh % + Slope 24  (18 – 42) 25  (11 – 36)  

Budapest 80  (-1 – 79) Thresh % + Slope 57  (39 – 96) 52  (27 – 79) 

Helsinki 27  (0 – 27) Thresh % + Slope      30  (7 – 37)   b 21  (6 – 27) 

Ljubljana 35  (1 – 36) Thresh % + Slope 23  (13 – 36)  26  (10 – 36) 

London 20  (-1 – 19) Thresh % + Slope 19  (5 – 24)  15  (4 – 19) 

Milan 74  (-2 – 72) Thresh % + Slope 41  (31 – 72)  55  (17 – 72) 

Paris 35  (-2 – 33) Thresh % + Slope 29  (16 – 45)  25  (8 – 33) 

Prague 56  (0 – 56) Thresh % + Slope 34  (22 – 56)  38  (18 – 56) 

Rome 80  (-3 – 77) Thresh % + Slope 45  (37 – 82)  51  (26 – 77) 

Stockholm 16  (0 – 16) Thresh % + Slope 16  (4 – 20)  11  (5 – 16) 

Turin 11 (0 – 11) Thresh % + Slope 9  (2 – 11) 11  (0 – 11) 

Valencia 79  (13 – 92) Analogue 8  (7 – 15) 9  (4 – 13) 

Zurich 16  (0 – 16) Thresh % + Slope 9  (7 – 16) 12  (4 – 16) 

a    Negative values denote that fewer deaths occur in the future with climate change than in 

the present-day.  

b    The range due to either GCM or emissions uncertainty is smaller than the range due to 

adaptation modelling uncertainty. 
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Table S1. K-S statistics between present and future warm season daily ATmax distributions for each 

city. The best match for each city is shaded. 

 

 

 

 

 

 

 

 

Athens Budapest Helsinki Llubljana London Milan Paris Prague Rome Stockholm Turin Valencia Zurich

Athens 0.487 0.137 0.434 0.165 0.354 0.338 0.200 0.139 0.356 0.441 0.479 0.439 0.194

Budapest 0.703 0.497 0.084 0.312 0.136 0.592 0.293 0.342 0.628 0.083 0.155 0.678 0.283

Dublin 0.916 0.804 0.520 0.680 0.579 0.825 0.673 0.699 0.868 0.542 0.456 0.922 0.664

Helsinki 0.870 0.742 0.413 0.600 0.480 0.765 0.586 0.620 0.795 0.436 0.347 0.875 0.576

Llubljana 0.823 0.678 0.293 0.517 0.379 0.724 0.504 0.535 0.745 0.320 0.228 0.828 0.493

London 0.854 0.720 0.377 0.575 0.451 0.751 0.561 0.595 0.776 0.402 0.305 0.858 0.550

Milan 0.637 0.363 0.160 0.191 0.092 0.515 0.137 0.226 0.551 0.144 0.222 0.595 0.161

Paris 0.785 0.628 0.236 0.466 0.328 0.683 0.454 0.484 0.711 0.262 0.177 0.784 0.443

Prague 0.742 0.575 0.171 0.411 0.266 0.639 0.395 0.424 0.673 0.199 0.116 0.738 0.382

Rome 0.617 0.317 0.270 0.164 0.167 0.492 0.078 0.198 0.527 0.253 0.310 0.573 0.130

Stockholm 0.876 0.750 0.412 0.606 0.485 0.773 0.592 0.628 0.804 0.438 0.341 0.882 0.581

Turin 0.950 0.848 0.587 0.726 0.632 0.867 0.721 0.748 0.911 0.605 0.523 0.955 0.713

Valencia 0.566 0.229 0.372 0.128 0.282 0.422 0.130 0.145 0.452 0.372 0.413 0.520 0.140

Zurich 0.805 0.660 0.276 0.501 0.364 0.705 0.489 0.521 0.729 0.303 0.213 0.809 0.478

Future ATmax Distributions
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