Skip to main content

Research Repository

Advanced Search

Numerical modelling of MPA-CVD reactors with the discontinuous Galerkin finite element method

Houston, Paul; Sime, Nathan

Numerical modelling of MPA-CVD reactors with the discontinuous Galerkin finite element method Thumbnail


Authors

PAUL HOUSTON PAUL.HOUSTON@NOTTINGHAM.AC.UK
Professor of Computational and Applied Maths

Nathan Sime



Abstract

In this article we develop a fully self consistent mathematical model describing the formation of a hydrogen plasma in a microwave power assisted chemical vapour deposition (MPA-CVD) reactor employed for the manufacture of synthetic diamond. The underlying multi-physics model includes constituent equations for the background gas mass average velocity, gas temperature, electromagnetic field energy and plasma density. The proposed mathematical model is numerically approximated based on exploiting the discontinuous Galerkin finite element method. We demonstrate the practical performance of this computational approach on a variety of CVD reactor geometries for a range of operating conditions.

Journal Article Type Article
Acceptance Date Jun 7, 2017
Publication Date Jul 3, 2017
Deposit Date Jun 8, 2017
Publicly Available Date Jul 3, 2017
Journal Journal of Physics D: Applied Physics
Print ISSN 0022-3727
Electronic ISSN 1361-6463
Publisher IOP Publishing
Peer Reviewed Peer Reviewed
Volume 50
Issue 29
Article Number 295202
DOI https://doi.org/10.1088/1361-6463/aa77dc
Keywords MPA-CVD modelling, Finite element methods, Discontinuous Galerkin methods
Public URL https://nottingham-repository.worktribe.com/output/870902
Publisher URL http://iopscience.iop.org/article/10.1088/1361-6463/aa77dc/meta;
Additional Information This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics D: Applied Physics. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at

Files





You might also like



Downloadable Citations