Skip to main content

Research Repository

Advanced Search

A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation

Kypraios, Theodore; Neal, Peter; Prangle, Dennis

A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation Thumbnail


Authors

Peter Neal

Dennis Prangle



Abstract

Likelihood-based inference for disease outbreak data can be very challenging due to the inherent dependence of the data and the fact that they are usually incomplete. In this paper we review recent Approximate Bayesian Computation (ABC) methods for the analysis of such data by fitting to them stochastic epidemic models without having to calculate the likelihood of the observed data. We consider both non-temporal and temporal-data and illustrate the methods with a number of examples featuring different models and datasets. In addition, we present extensions to existing algorithms which are easy to implement and provide an improvement to the existing methodology. Finally, R code to implement the algorithms presented in the paper is available on https://github.com/kypraios/epiABC.

Citation

Kypraios, T., Neal, P., & Prangle, D. (2017). A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. Mathematical Biosciences, 287, https://doi.org/10.1016/j.mbs.2016.07.001

Journal Article Type Article
Acceptance Date Jul 1, 2016
Online Publication Date Jul 18, 2016
Publication Date May 31, 2017
Deposit Date Jul 6, 2017
Publicly Available Date Jul 6, 2017
Journal Mathematical Biosciences
Print ISSN 0025-5564
Electronic ISSN 1879-3134
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 287
DOI https://doi.org/10.1016/j.mbs.2016.07.001
Keywords Bayesian inference; Epidemics; Stochastic epidemic models; Approximate Bayesian Computation; Population Monte Carlo
Public URL https://nottingham-repository.worktribe.com/output/863823
Publisher URL https://doi.org/10.1016/j.mbs.2016.07.001
Contract Date Jul 6, 2017

Files





You might also like



Downloadable Citations