A. Sancho-Tom�s
A generalised model of electrical energy demand from small household appliances
Sancho-Tom�s, A.; Sumner, M.; Robinson, Darren
Authors
Professor MARK SUMNER MARK.SUMNER@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTRICAL ENERGY SYSTEMS
Darren Robinson
Abstract
Accurate forecasting of residential energy loads is highly influenced by the use of electrical appliances, which not only affect electrical energy use but also internal heat gains, which in turn affects thermal energy use. It is therefore important to accurately understand the characteristics of appliance use and to embed this understanding into predictive models to support load forecast and building design decisions. Bottom-up techniques that account for the variability in socio-demographic characteristics of the occupants and their behaviour patterns constitute a powerful tool to this end, and are potentially able to inform the design of Demand Side Management strategies in homes.
To this end, this paper presents a comparison of alternative strategies to stochastically model the temporal energy use of low-load appliances (meaning those whose annual energy share is individually small but significant when considered as a group). In particular, discrete-time Markov processes and survival analysis have been explored. Rigorous mathematical procedures, including cluster analysis, have been employed to identify a parsimonious strategy for the modelling of variations in energy demand over time of the four principle categories of small appliances: audio-visual, computing, kitchen and other small appliances. From this it is concluded that a model of the duration for which appliances survive in discrete states expressed as bins in fraction of maximum power demand performs best. This general solution may be integrated with relative ease with dynamic simulation programs, to complement existing models of relatively large load appliances for the comprehensive simulation of household appliance use.
Citation
Sancho-Tomás, A., Sumner, M., & Robinson, D. (2017). A generalised model of electrical energy demand from small household appliances. Energy and Buildings, 135, 350-366. https://doi.org/10.1016/j.enbuild.2016.10.044
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 25, 2016 |
Online Publication Date | Nov 20, 2016 |
Publication Date | Jan 15, 2017 |
Deposit Date | Feb 2, 2017 |
Publicly Available Date | Feb 2, 2017 |
Journal | Energy and Buildings |
Print ISSN | 0378-7788 |
Electronic ISSN | 1872-6178 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 135 |
Pages | 350-366 |
DOI | https://doi.org/10.1016/j.enbuild.2016.10.044 |
Keywords | Electrical appliances; Stochastic modelling; Markov chain; Occupant behaviour; Demand side management; Cluster algorithm; Residential energy use; Energy planning |
Public URL | https://nottingham-repository.worktribe.com/output/840351 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0378778816313378 |
Additional Information | This article is maintained by: Elsevier; Article Title: A generalised model of electrical energy demand from small household appliances; Journal Title: Energy and Buildings; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.enbuild.2016.10.044; Content Type: article; Copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. |
Contract Date | Feb 2, 2017 |
Files
A generalised model of electrical energy demand from small household appliances.pdf
(2.3 Mb)
PDF
You might also like
Double-ended Fault Location Method with Reduced Measurements
(2024)
Presentation / Conference Contribution
A Statistical Approach to Predict the Low Frequency Common Mode Current in Multi-Converter setups
(2023)
Presentation / Conference Contribution
Control of 7-phase permanent magnet synchronous motor drive post three failures
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search