Skip to main content

Research Repository

Advanced Search

The deterministic Kermack‒McKendrick model bounds the general stochastic epidemic

Wilkinson, Robert R.; Ball, Frank G.; Sharkey, Kieran J.

The deterministic Kermack‒McKendrick model bounds the general stochastic epidemic Thumbnail


Authors

Robert R. Wilkinson

Frank G. Ball

Kieran J. Sharkey



Abstract

We prove that, for Poisson transmission and recovery processes, the classic Susceptible $\to$ Infected $\to$ Recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time $t>0$, a strict lower bound on the expected number of suscpetibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.

Citation

Wilkinson, R. R., Ball, F. G., & Sharkey, K. J. (2016). The deterministic Kermack‒McKendrick model bounds the general stochastic epidemic. Journal of Applied Probability, 53(4), 1031-1040. https://doi.org/10.1017/jpr.2016.62

Journal Article Type Article
Acceptance Date Feb 17, 2016
Online Publication Date Dec 9, 2016
Publication Date 2016-12
Deposit Date Feb 8, 2017
Publicly Available Date Feb 8, 2017
Journal Journal of Applied Probability
Print ISSN 0021-9002
Publisher Applied Probability Trust
Peer Reviewed Peer Reviewed
Volume 53
Issue 4
Pages 1031-1040
DOI https://doi.org/10.1017/jpr.2016.62
Keywords General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound
Public URL https://nottingham-repository.worktribe.com/output/835942
Publisher URL https://www.cambridge.org/core/journals/journal-of-applied-probability/article/div-classtitlethe-deterministic-kermackmckendrick-model-bounds-the-general-stochastic-epidemicdiv/E36C0B8C1A9341F35FA2E0B22CE35946
Contract Date Feb 8, 2017

Files





Downloadable Citations