Dan R.W. Vaughan
Variation Aware Assembly Systems for Aircraft Wings
Vaughan, Dan R.W.; Bakker, Otto J.; Branson, David T.; Ratchev, Svetan
Authors
Otto J. Bakker
David T. Branson
Professor SVETAN RATCHEV svetan.ratchev@nottingham.ac.uk
CRIPPS PROFESSOR OF PRODUCTION ENGINEERING & HEAD OF RESEARCH DIVISION
Abstract
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers. In this way the assembly fastening operations can be performed optimally and account for manufacturing induced dimensional variations that reduce cycle times in aircraft wing assembly processes. By alleviating the dimensional variation caused by the upstream manufacturing processes and the inaccuracies in the tooling we will achieve a significant increase in the capability of aircraft wing assembly. To analyze the effectiveness of the VAA system a rib insertion process, occurring in a typical aircraft wing assembly, was replicated on a demonstrator test rig. Industrial grade motion controllers and metrology equipment ware utilized to allow for comparison to current industry practices. The experimental case study is described and initial process data shows promise for future implementation on a full scale assembly system.
Citation
Vaughan, D. R., Bakker, O. J., Branson, D. T., & Ratchev, S. Variation Aware Assembly Systems for Aircraft Wings. Presented at SAE 2016 Aerospace Manufacturing and Automated Fastening (AMAF) Conference & Exhibition
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | SAE 2016 Aerospace Manufacturing and Automated Fastening (AMAF) Conference & Exhibition |
End Date | Oct 6, 2016 |
Acceptance Date | Jul 20, 2015 |
Online Publication Date | Sep 27, 2016 |
Publication Date | Sep 27, 2016 |
Deposit Date | Feb 6, 2017 |
Electronic ISSN | 0148-7191 |
Peer Reviewed | Peer Reviewed |
Series ISSN | 2688-3627 |
Book Title | SAE Technical Paper Series |
DOI | https://doi.org/10.4271/2016-01-2106 |
Keywords | Aerospace, Tools and equipment, Automation, Robotics, Machining processes |
Public URL | https://nottingham-repository.worktribe.com/output/824672 |
Publisher URL | http://dx.doi.org/10.4271/2016-01-2106 |
Contract Date | Feb 6, 2017 |
You might also like
Semantic Modelling of a Manufacturing Value Chain: Disruption Response Planning
(2024)
Journal Article
Improving the Development and Reusability of Industrial AI Through Semantic Models
(2024)
Presentation / Conference Contribution
Semantic Knowledge Representation in Asset Administration Shells: Empowering Manufacturing Utilization
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search