Julia Schiemann
Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output
Schiemann, Julia; Puggioni, Paolo; Dacre, Joshua; Pelko, Miha; Domanski, Aleksander; van Rossum, Mark C.W.; Duguid, Ian
Authors
Paolo Puggioni
Joshua Dacre
Miha Pelko
Aleksander Domanski
Mark C.W. van Rossum
Ian Duguid
Abstract
Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.
Citation
Schiemann, J., Puggioni, P., Dacre, J., Pelko, M., Domanski, A., van Rossum, M. C., & Duguid, I. (2015). Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output. Cell Reports, 11(8), https://doi.org/10.1016/j.celrep.2015.04.042
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 20, 2015 |
Online Publication Date | May 14, 2015 |
Publication Date | May 26, 2015 |
Deposit Date | Feb 8, 2018 |
Publicly Available Date | Feb 8, 2018 |
Journal | Cell Reports |
Print ISSN | 2211-1247 |
Electronic ISSN | 2211-1247 |
Publisher | Cell Press |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 8 |
DOI | https://doi.org/10.1016/j.celrep.2015.04.042 |
Public URL | https://nottingham-repository.worktribe.com/output/751347 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S221112471500443X?via%3Dihub |
Contract Date | Feb 8, 2018 |
Files
paolo_cellrep_publ_15.pdf
(4.1 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
Reinforcement learning when your life depends on it: a neuro-economic theory of learning
(2024)
Preprint / Working Paper
Energetically efficient learning in neuronal networks
(2023)
Journal Article
Competitive plasticity to reduce the energetic costs of learning
(2023)
Preprint / Working Paper
Lazy learning: a biologically-inspired plasticity rule for fast and energy efficient synaptic plasticity
(2023)
Preprint / Working Paper
Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search