Professor MARK VAN ROSSUM Mark.VanRossum@nottingham.ac.uk
CHAIR AND DIRECTOR/NEURAL COMPUTATION RESEARCH GROUP
Competitive plasticity to reduce the energetic costs of learning
van Rossum, Mark C.W.
Authors
Abstract
The brain is not only constrained by energy needed to fuel computation, but it is also constrained by energy needed to form memories. Experiments have shown that learning simple conditioning tasks already carries a significant metabolic cost. Yet, learning a task like MNIST to 95% accuracy appears to require at least 108 synaptic updates. Therefore the brain has likely evolved to be able to learn using as little energy as possible. We explored the energy required for learning in feedforward neural networks. Based on a parsimonious energy model, we propose two plasticity restricting algorithms that save energy: 1) only modify synapses with large updates, and 2) restrict plasticity to subsets of synapses that form a path through the network. Combining these two methods leads to substantial energy savings while only incurring a small increase in learning time. In biology networks are often much larger than the task requires. In particular in that case, large savings can be achieved. Thus competitively restricting plasticity helps to save metabolic energy associated to synaptic plasticity. The results might lead to a better understanding of biological plasticity and a better match between artificial and biological learning. Moreover, the algorithms might also benefit hardware because in electronics memory storage is energetically costly as well.
Citation
van Rossum, M. C. Competitive plasticity to reduce the energetic costs of learning
Working Paper Type | Working Paper |
---|---|
Deposit Date | Apr 8, 2023 |
Publicly Available Date | Apr 19, 2023 |
Public URL | https://nottingham-repository.worktribe.com/output/19296531 |
Publisher URL | https://www.biorxiv.org/content/10.1101/2023.04.04.535544v1 |
Additional Information | This article is a preprint and has not been certified by peer review. |
Files
Competitive plasticity to reduce the energetic costs of learning
(584 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Reinforcement learning when your life depends on it: a neuro-economic theory of learning
(2024)
Preprint / Working Paper
Energetically efficient learning in neuronal networks
(2023)
Journal Article
Lazy learning: a biologically-inspired plasticity rule for fast and energy efficient synaptic plasticity
(2023)
Preprint / Working Paper
Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep
(2023)
Journal Article
Estimating the energy requirements for long term memory formation
(2023)
Preprint / Working Paper
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search