Duncan Barrack
Modelling cell cycle synchronisation in networks of coupled radial glial cells
Barrack, Duncan; Thul, Ruediger; Owen, Markus R.
Authors
Dr RUEDIGER THUL RUEDIGER.THUL@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Professor MARKUS OWEN MARKUS.OWEN@NOTTINGHAM.AC.UK
PROFESSOR OF MATHEMATICAL BIOLOGY
Abstract
Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation may help to understand normal and pathological brain development.
Citation
Barrack, D., Thul, R., & Owen, M. R. (2015). Modelling cell cycle synchronisation in networks of coupled radial glial cells. Journal of Theoretical Biology, 377, https://doi.org/10.1016/j.jtbi.2015.04.013
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 8, 2015 |
Publication Date | Apr 20, 2015 |
Deposit Date | May 24, 2016 |
Publicly Available Date | May 24, 2016 |
Journal | Journal of Theoretical Biology |
Print ISSN | 0022-5193 |
Electronic ISSN | 1095-8541 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 377 |
DOI | https://doi.org/10.1016/j.jtbi.2015.04.013 |
Keywords | Cell Cycle, Calcium Dynamics, Radial Glial Cells, Cell Cycle Synchronisation, Bifurcation Analysis |
Public URL | https://nottingham-repository.worktribe.com/output/749397 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0022519315001757 |
Contract Date | May 24, 2016 |
Files
barrack_manuscript.pdf
(2.5 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
Oscillatory networks: insights from piecewise-linear modelling
(2024)
Journal Article
The two-process model for sleep–wake regulation: A nonsmooth dynamics perspective
(2022)
Journal Article
Word and Multiword Processing
(2022)
Book Chapter
Neural fields with rebound currents: Novel routes to patterning
(2021)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search