Rachael N. Power
Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications
Power, Rachael N.; Cavanagh, Brenton L.; Dixon, James E.; Curtin, Caroline M.; O’Brien, Fergal J.
Authors
Brenton L. Cavanagh
Dr JAMES DIXON JAMES.DIXON@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Caroline M. Curtin
Fergal J. O’Brien
Abstract
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen–nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen–nanohydroxyapatite (coll–nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll–nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.
Citation
Power, R. N., Cavanagh, B. L., Dixon, J. E., Curtin, C. M., & O’Brien, F. J. (2022). Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. International Journal of Molecular Sciences, 23(3), Article 1460. https://doi.org/10.3390/ijms23031460
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 21, 2022 |
Online Publication Date | Jan 27, 2022 |
Publication Date | Feb 1, 2022 |
Deposit Date | Jun 13, 2022 |
Publicly Available Date | Jun 14, 2022 |
Journal | International Journal of Molecular Sciences |
Print ISSN | 1661-6596 |
Electronic ISSN | 1422-0067 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 23 |
Issue | 3 |
Article Number | 1460 |
DOI | https://doi.org/10.3390/ijms23031460 |
Keywords | Inorganic Chemistry; Organic Chemistry; Physical and Theoretical Chemistry; Computer Science Applications; Spectroscopy; Molecular Biology; General Medicine; Catalysis |
Public URL | https://nottingham-repository.worktribe.com/output/7351547 |
Publisher URL | https://www.mdpi.com/1422-0067/23/3/1460 |
Files
Gene-Activated Scaffold
(2.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
RAPID INTRAOPERATIVE GENETIC AUGMENTATION OF AUTOGRAFTS FOR RECONSTRUCTIVE SURGERY OF SEVERE TRAUMA
(2022)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search