Skip to main content

Research Repository

Advanced Search

Experimental study of the hydrodynamic behaviour of slug flow in a vertical riser

Abdulkadir, M.; Hernandez-Perez, V.; Lowndes, Ian; Azzopardi, Barry J.; Dzomeku, S.

Experimental study of the hydrodynamic behaviour of slug flow in a vertical riser Thumbnail


Authors

M. Abdulkadir

V. Hernandez-Perez

Ian Lowndes

Barry J. Azzopardi

S. Dzomeku



Abstract

This paper presents an investigation of the hydrodynamics of slug flow in a vertical 67 mm internal diameter riser. The slug flow regime was generated using a multiphase air–silicone oil mixture over a range of gas (0.42<USG<1.35 m/s) and liquid (0.05<USL<0.38 m/s) superficial velocities. Electrical capacitance tomography (ECT) was used to determine: the velocities of the Taylor bubbles and liquid slugs, the slug frequencies, the lengths of Taylor bubbles and the liquid slugs, the void fractions within the Taylor bubbles and liquid slugs and the liquid film thicknesses. A differential pressure transducer was used to measure the pressure drops along the length of the riser. It was found that the translational velocity of a Taylor bubble (the structure velocity) was strongly dependent on the mixture superficial velocity. As the gas superficial velocity, was increased, the void fraction and the lengths of the liquid slugs and the Taylor bubbles were observed to increase. The increase in gas superficial velocity causes an increase in the frictional pressure drop within the pipe, whilst the total pressure drop (which is a sum of the hydrostatic and frictional pressure drop) along the length of the riser decreases. In addition, the frequencies of the liquid slugs were observed to increase as the liquid superficial velocity increases, but to be weakly dependant on the gas superficial velocity. The manual counting method for the determination of slug frequency was found to be in good agreement with the power spectral density (PSD) computed method.

Citation

Abdulkadir, M., Hernandez-Perez, V., Lowndes, I., Azzopardi, B. J., & Dzomeku, S. (2014). Experimental study of the hydrodynamic behaviour of slug flow in a vertical riser. Chemical Engineering Science, 106, https://doi.org/10.1016/j.ces.2013.11.021

Journal Article Type Article
Acceptance Date Nov 10, 2013
Online Publication Date Nov 22, 2013
Publication Date Mar 17, 2014
Deposit Date Jul 28, 2016
Publicly Available Date Jul 28, 2016
Journal Chemical Engineering Science
Print ISSN 0009-2509
Electronic ISSN 1873-4405
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 106
DOI https://doi.org/10.1016/j.ces.2013.11.021
Keywords ECT, Taylor Bubble, Liquid Slug, Slug Unit, Frequency, Void Fraction
Public URL https://nottingham-repository.worktribe.com/output/724855
Publisher URL http://www.sciencedirect.com/science/article/pii/S0009250913007574
Contract Date Jul 28, 2016

Files





Downloadable Citations