DANIEL WILKINSON DANIEL.WILKINSON@NOTTINGHAM.AC.UK
Principal Research Fellow
A validation of the application of D2O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans
Wilkinson, Daniel J.; Franchi, Martino V.; Brook, Matthew S.; Narici, Marco V.; Williams, John P.; Mitchell, William K.; Szewczyk, Nathaniel J.; Greenhaff, Paul L.; Atherton, Philip J.; Smith, Kenneth
Authors
Martino V. Franchi
Matthew S. Brook
Marco V. Narici
John P. Williams
William K. Mitchell
Nathaniel J. Szewczyk
Paul L. Greenhaff
Philip J. Atherton
KENNETH SMITH KEN.SMITH@NOTTINGHAM.AC.UK
Professor of Metabolic Mass Spectrometry
Abstract
Quantification of muscle protein synthesis (MPS) remains a cornerstone for understanding the control of muscle mass. Traditional [13C]amino acid tracer methodologies necessitate sustained bed rest and intravenous cannulation(s), restricting studies to ∼12 h, and thus cannot holistically inform on diurnal MPS. This limits insight into the regulation of habitual muscle metabolism in health, aging, and disease while querying the utility of tracer techniques to predict the long-term efficacy of anabolic/anticatabolic interventions. We tested the efficacy of the D2O tracer for quantifying MPS over a period not feasible with 13C tracers and too short to quantify changes in mass. Eight men (22 ± 3.5 yr) undertook one-legged resistance exercise over an 8-day period (4 × 8–10 repetitions, 80% 1RM every 2nd day, to yield “nonexercised” vs. “exercise” leg comparisons), with vastus lateralis biopsies taken bilaterally at 0, 2, 4, and 8 days. After day 0 biopsies, participants consumed a D2O bolus (150 ml, 70 atom%); saliva was collected daily. Fractional synthetic rates (FSRs) of myofibrillar (MyoPS), sarcoplasmic (SPS), and collagen (CPS) protein fractions were measured by GC-pyrolysis-IRMS and TC/EA-IRMS. Body water initially enriched at 0.16–0.24 APE decayed at ∼0.009%/day. In the nonexercised leg, MyoPS was 1.45 ± 0.10, 1.47 ± 0.06, and 1.35 ± 0.07%/day at 0–2, 0–4, and 0–8 days, respectively (∼0.05–0.06%/h). MyoPS was greater in the exercised leg (0–2 days: 1.97 ± 0.13%/day; 0–4 days: 1.96 ± 0.15%/day, P < 0.01; 0–8 days: 1.79 ± 0.12%/day, P < 0.05). CPS was slower than MyoPS but followed a similar pattern, with the exercised leg tending to yield greater FSRs (0–2 days: 1.14 ± 0.13 vs. 1.45 ± 0.15%/day; 0–4 days: 1.13 ± 0.07%/day vs. 1.47 ± 0.18%/day; 0–8 days: 1.03 ± 0.09%/day vs. 1.40 ± 0.11%/day). SPS remained unchanged. Therefore, D2O has unrivaled utility to quantify day-to-day MPS in humans and inform on short-term changes in anabolism and presumably catabolism alike.
Citation
Wilkinson, D. J., Franchi, M. V., Brook, M. S., Narici, M. V., Williams, J. P., Mitchell, W. K., …Smith, K. (2014). A validation of the application of D2O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. AJP - Endocrinology and Metabolism, 306(5), Article E571-E579. https://doi.org/10.1152/ajpendo.00650.2013
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 28, 2013 |
Online Publication Date | Dec 31, 2013 |
Publication Date | Mar 1, 2014 |
Deposit Date | Aug 1, 2017 |
Journal | AJP: Endocrinology and Metabolism |
Print ISSN | 0193-1849 |
Electronic ISSN | 1522-1555 |
Publisher | American Physiological Society |
Peer Reviewed | Peer Reviewed |
Volume | 306 |
Issue | 5 |
Article Number | E571-E579 |
DOI | https://doi.org/10.1152/ajpendo.00650.2013 |
Keywords | Article Abstract MATERIALS AND METHODS RESULTS DISCUSSION GRANTS DISCLOSURES AUTHOR CONTRIBUTIONS ACKNOWLEDGMENTS REFERENCES Figures & Data Info Alert m |
Public URL | https://nottingham-repository.worktribe.com/output/722568 |
Publisher URL | https://doi.org/10.1152/ajpendo.00650.2013 |
Contract Date | Aug 1, 2017 |
You might also like
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search