Alain Yee-Loong Chong
A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption
Chong, Alain Yee-Loong
Authors
Abstract
The advancement in wireless and mobile technologies has presented tremendous business opportunity for mobile-commerce (m-commerce). This research aims to examine the factors that influence consumers’ m-commerce adoption intention. Variables such as perceived usefulness, perceived ease of use, perceived enjoyment, trust, cost, network influence, and variety of services were used to examine the adoption intentions of consumers. Data was collected from 376 m-commerce users. A multi-analytic approach was proposed whereby the research model was tested using structural equation modeling (SEM), and the results from SEM were used as inputs for a neural network model to predict m-commerce adoption. The result showed that perceived usefulness, perceived enjoyment, trust, cost, network influence, and trust have significant influence on consumers’ m-commerce adoption intentions. However, the neural network model developed in this research showed that the best predictors of m-commerce adoption are network influence, trust, perceived usefulness, variety of service, and perceived enjoyment. This research proposed an innovative new approach to understand m-commerce adoption, and the result for this study will be useful for telecommunication and m-commerce companies in formulating strategies to attract more consumers.
Citation
Chong, A. Y. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), https://doi.org/10.1016/j.eswa.2012.08.067
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 1, 2012 |
Online Publication Date | Sep 1, 2012 |
Publication Date | Mar 31, 2013 |
Deposit Date | Nov 6, 2017 |
Journal | Expert Systems with Applications |
Print ISSN | 0957-4174 |
Electronic ISSN | 0957-4174 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 40 |
Issue | 4 |
DOI | https://doi.org/10.1016/j.eswa.2012.08.067 |
Keywords | m-Commerce; Technology adoption; SEM; Neural network; Multi-analytic data analysis |
Public URL | https://nottingham-repository.worktribe.com/output/713559 |
Publisher URL | https://doi.org/10.1016/j.eswa.2012.08.067 |
Contract Date | Nov 1, 2017 |
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search