Skip to main content

Research Repository

Advanced Search

Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses

Ka�par, Z.; Sur�nek, M.; Zub�?, J.; Krizek, F.; Nov�k, V.; Campion, R. P.; W�rnle, M. S.; Gambardella, P.; Marti, X.; N?mec, P.; Edmonds, K. W.; Reimers, S.; Amin, O. J.; Maccherozzi, F.; Dhesi, S. S.; Wadley, P.; Wunderlich, J.; Olejn�k, K.; Jungwirth, T.

Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses Thumbnail


Authors

Z. Ka�par

M. Sur�nek

J. Zub�?

F. Krizek

V. Nov�k

M. S. W�rnle

P. Gambardella

X. Marti

P. N?mec

KEVIN EDMONDS kevin.edmonds@nottingham.ac.uk
Associate Professor & Reader in Physics

S. Reimers

O. J. Amin

F. Maccherozzi

S. S. Dhesi

PETER WADLEY PETER.WADLEY@NOTTINGHAM.AC.UK
Professor of Physics

J. Wunderlich

K. Olejn�k

TOMAS JUNGWIRTH tomas.jungwirth@nottingham.ac.uk
Research Professor of Ferromagnetic Semiconductors



Abstract

Antiferromagnets are of potential use in the development of spintronic devices due to their ultrafast dynamics, insensitivity to external magnetic fields and absence of magnetic stray fields. Similar to their ferromagnetic counterparts, antiferromagnets can store information in the orientations of the collective magnetic order vector. However, the readout magnetoresistivity signals in simple antiferromagnetic films are weak, and reorientation of the magnetic order vector via optical excitation has not yet been achieved. Here we report the reversible and reproducible quenching of antiferromagnetic CuMnAs into nano-fragmented domain states using either electrical or ultrashort optical pulses. The changes in the resistivity of the system approach 20% at room temperature, which is comparable to the giant magnetoresistance ratios in ferromagnetic multilayers. We also obtain a signal readout by optical reflectivity.

Citation

Kašpar, Z., Surýnek, M., Zubáč, J., Krizek, F., Novák, V., Campion, R. P., …Jungwirth, T. (2021). Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nature Electronics, 4(1), 30-37. https://doi.org/10.1038/s41928-020-00506-4

Journal Article Type Article
Acceptance Date Oct 20, 2020
Online Publication Date Nov 30, 2020
Publication Date Jan 1, 2021
Deposit Date Jan 5, 2021
Publicly Available Date May 31, 2021
Journal Nature Electronics
Electronic ISSN 2520-1131
Publisher Nature Research
Peer Reviewed Peer Reviewed
Volume 4
Issue 1
Pages 30-37
DOI https://doi.org/10.1038/s41928-020-00506-4
Public URL https://nottingham-repository.worktribe.com/output/5124568
Publisher URL https://www.nature.com/articles/s41928-020-00506-4
Additional Information Received: 29 February 2020; Accepted: 20 October 2020; First Online: 30 November 2020; : The authors declare no competing interests.

Files





You might also like



Downloadable Citations