Z. Ka�par
Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses
Ka�par, Z.; Sur�nek, M.; Zub�?, J.; Krizek, F.; Nov�k, V.; Campion, R. P.; W�rnle, M. S.; Gambardella, P.; Marti, X.; N?mec, P.; Edmonds, K. W.; Reimers, S.; Amin, O. J.; Maccherozzi, F.; Dhesi, S. S.; Wadley, P.; Wunderlich, J.; Olejn�k, K.; Jungwirth, T.
Authors
M. Sur�nek
J. Zub�?
F. Krizek
V. Nov�k
RICHARD CAMPION RICHARD.CAMPION@NOTTINGHAM.AC.UK
Principal Research Fellow
M. S. W�rnle
P. Gambardella
X. Marti
P. N?mec
KEVIN EDMONDS kevin.edmonds@nottingham.ac.uk
Associate Professor & Reader in Physics
S. Reimers
O. J. Amin
F. Maccherozzi
S. S. Dhesi
PETER WADLEY PETER.WADLEY@NOTTINGHAM.AC.UK
Professor of Physics
J. Wunderlich
K. Olejn�k
TOMAS JUNGWIRTH tomas.jungwirth@nottingham.ac.uk
Research Professor of Ferromagnetic Semiconductors
Abstract
Antiferromagnets are of potential use in the development of spintronic devices due to their ultrafast dynamics, insensitivity to external magnetic fields and absence of magnetic stray fields. Similar to their ferromagnetic counterparts, antiferromagnets can store information in the orientations of the collective magnetic order vector. However, the readout magnetoresistivity signals in simple antiferromagnetic films are weak, and reorientation of the magnetic order vector via optical excitation has not yet been achieved. Here we report the reversible and reproducible quenching of antiferromagnetic CuMnAs into nano-fragmented domain states using either electrical or ultrashort optical pulses. The changes in the resistivity of the system approach 20% at room temperature, which is comparable to the giant magnetoresistance ratios in ferromagnetic multilayers. We also obtain a signal readout by optical reflectivity.
Citation
Kašpar, Z., Surýnek, M., Zubáč, J., Krizek, F., Novák, V., Campion, R. P., …Jungwirth, T. (2021). Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nature Electronics, 4(1), 30-37. https://doi.org/10.1038/s41928-020-00506-4
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 20, 2020 |
Online Publication Date | Nov 30, 2020 |
Publication Date | Jan 1, 2021 |
Deposit Date | Jan 5, 2021 |
Publicly Available Date | May 31, 2021 |
Journal | Nature Electronics |
Electronic ISSN | 2520-1131 |
Publisher | Nature Research |
Peer Reviewed | Peer Reviewed |
Volume | 4 |
Issue | 1 |
Pages | 30-37 |
DOI | https://doi.org/10.1038/s41928-020-00506-4 |
Public URL | https://nottingham-repository.worktribe.com/output/5124568 |
Publisher URL | https://www.nature.com/articles/s41928-020-00506-4 |
Additional Information | Received: 29 February 2020; Accepted: 20 October 2020; First Online: 30 November 2020; : The authors declare no competing interests. |
Files
Quench Switching Main Text Kaspar Etal
(2.3 Mb)
PDF
You might also like
Antiferromagnetic spintronics
(2016)
Journal Article
Relativistic Neel-Order Fields Induced by Electrical Current in Antiferromagnets
(2014)
Journal Article
Anisotropic magnetoresistance in an antiferromagnetic semiconductor
(2014)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search