Carmel L. Howe
Surface Plasmon Resonance Imaging of Excitable Cells
Howe, Carmel L.; Webb, Kevin F.; Abayzeed, Sidahmed A.; Anderson, David J.; Denning, Chris; Russell, Noah A.
Authors
Dr KEVIN WEBB KEVIN.WEBB@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Sidahmed A. Abayzeed
David J. Anderson
Professor CHRIS DENNING chris.denning@nottingham.ac.uk
PROFESSOR OF STEM CELL BIOLOGY
Noah A. Russell
Abstract
Surface plasmons are highly sensitive to refractive index variations adjacent to the surface. This sensitivity has been exploited successfully for chemical and biological assays. In these systems, a surface plasmon resonance (SPR)-based sensor detects temporal variations in the refractive index at a point. SPR has also been used in imaging systems where the spatial variations of refractive index in the sample provide the contrast mechanism. A high numerical aperture objective lens has been used to design SPR microscopy systems with the ability to image adherent live cells. Addressing research questions in cell physiology and pharmacology often requires the development of a multimodal microscope where complementary information can be obtained.
In this paper, we present the development of a multimodal microscope that combines surface plasmon resonance imaging with a number of additional imaging modalities including bright-field, epi-fluorescence, total internal reflection microscopy (TIRM) and SPR fluorescence microscopy. We used a high numerical aperture objective lens to achieve SPR and TIR microscopy with the ability to image adherent live cells non-invasively. The platform has been used to image live cell cultures demonstrating both fluorescent and label-free techniques. The SPR and TIR imaging systems feature a wide field of view (300 µm) that allows measurements from multiple cells while the resolution is sufficient to image fine cellular processes. The ability of the platform to perform label-free functional imaging of living cell was demonstrated by imaging the spatial variations in contraction of stem cell-derived cardiomyocytes. This technique has a promise for non-invasive imaging of the development of cultured cells over very long periods of time.
Citation
Howe, C. L., Webb, K. F., Abayzeed, S. A., Anderson, D. J., Denning, C., & Russell, N. A. Surface Plasmon Resonance Imaging of Excitable Cells
Working Paper Type | Working Paper |
---|---|
Deposit Date | Apr 20, 2024 |
Public URL | https://nottingham-repository.worktribe.com/output/4901458 |
Publisher URL | https://www.biorxiv.org/content/10.1101/390948v1 |
You might also like
Investigation of Exhaust Particles on Different TEM Grids: a Comparison between Graphene Oxide and Silicon Nitride Grids
(2023)
Presentation / Conference Contribution
Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution
(2022)
Presentation / Conference Contribution
Non-invasive hydrodynamic imaging in plant roots at cellular resolution
(2021)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search