J K Langley
Bank-Laine functions with real zeros
Langley, J K
Authors
Abstract
Suppose that E is a real entire function of finite order with zeros which are all real but neither bounded above nor bounded below, such that E (z) = ±1 whenever E(z) = 0. Then either E has an explicit representation in terms of trigonometric functions or the zeros of E have exponent of convergence at least 3. An example constructed via quasiconformal surgery demonstrates the sharpness of this result.
Citation
Langley, J. K. (2020). Bank-Laine functions with real zeros. Computational Methods and Function Theory, 20, 653-665. https://doi.org/10.1007/s40315-020-00342-9
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 19, 2020 |
Online Publication Date | Sep 24, 2020 |
Publication Date | Sep 24, 2020 |
Deposit Date | Jul 21, 2020 |
Publicly Available Date | Sep 25, 2021 |
Journal | Computational Methods and Function Theory |
Print ISSN | 1617-9447 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Pages | 653-665 |
DOI | https://doi.org/10.1007/s40315-020-00342-9 |
Keywords | Bank-Laine function; entire function; zeros MSC 2010: 30D20; 30D35 |
Public URL | https://nottingham-repository.worktribe.com/output/4780913 |
Publisher URL | https://link.springer.com/article/10.1007/s40315-020-00342-9 |
Files
Langley2020_Article_Bank-LaineFunctionsWithRealZer
(315 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search