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Abstract
Suppose that E is a real entire function of finite order with zeros which are all real but
neither bounded above nor bounded below, such that E ′(z) = ±1whenever E(z) = 0.
Then either E has an explicit representation in terms of trigonometric functions or the
zeros of E have exponent of convergence at least 3. An example constructed via
quasiconformal surgery demonstrates the sharpness of this result.
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1 Introduction

For a non-constant entire function f , denote by

ρ( f ) = lim sup
r→+∞

log+ T (r , f )

log r
, λ( f ) = lim sup

r→+∞
log+ N (r , 1

f )

log r
≤ ρ( f ),

its order of growth and the exponent of convergence of its zeros [10]. In their semi-
nal paper [1], Bank and Laine proved several landmark results on the oscillation of
solutions of

y′′ + A(z)y = 0, (1)

in which A is an entire function. Their approach was based on taking linearly inde-
pendent solutions f1, f2 of (1), normalised so as to have Wronskian W ( f1, f2) =
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f1 f ′
2 − f ′

1 f2 = 1, and then considering the product E = f1 f2, which satisfies

4A =
(
E ′

E

)2

− 2
E ′′

E
− 1

E2 . (2)

In particular, it was shown in [1] that if λ(E) + ρ(A) < +∞ then ρ(E) < +∞,
whereas if A is transcendental then the quotient U = f1/ f2 always has infinite order,
since [14, Ch. 6]

SU (z) = U ′′′(z)
U ′(z)

− 3

2

(
U ′′(z)
U ′(z)

)2

= 2A, (3)

where SU (z) is the Schwarzian derivative. The following results were proved by Bank
and Laine, Rossi and Shen [1,22,23].

Theorem 1.1 ([1,22,23]) Let A be an entire function, let f1, f2 be linearly independent
solutions of (1) and let E = f1 f2, so that λ(E) = max{λ( f1), λ( f2)}.
(i) If A is a polynomial of degree n > 0 then λ(E) = (n + 2)/2.
(ii) If λ(E) < ρ(A) < +∞ then ρ(A) ∈ N = {1, 2, . . .}.
(iii) If A is transcendental and ρ(A) ≤ 1/2 then λ(E) = +∞, while if 1/2 < ρ(A) <

1 then

1

ρ(A)
+ 1

λ(E)
≤ 2. (4)

Theorem 1.1(ii) inspired the Bank-Laine conjecture, to the effect that if A is a tran-
scendental entire function and f1, f2 are linearly independent solutions of (1) with
λ( f1 f2) finite then ρ(A) ∈ N ∪ {+∞}. This conjecture has recently been disproved,
however, in the first of two remarkable papers of Bergweiler and Eremenko [4,5]which
use quasiconformal constructions; in the second of these they show that equality is
possible in (4), for every choice of ρ(A) ∈ (1/2, 1).

Themain thrust of this paper concerns the location of zeros ofBank-Laine functions,
these being entire functions E such that E(z) = 0 implies E ′(z) = ±1. By [2, Lem.C],
an entire function E is a Bank-Laine function if and only if E = f1 f2, where f1, f2 are
linearly independent and solve (1), with W ( f1, f2) = 1 and A entire, satisfying (2).
Although a Bank-Laine function with unrestricted growth may have arbitrary zeros,
subject only to these having no finite limit point [24], the following is a combination
of results from [6,18].

Theorem 1.2 ([6,18]) Let E be a Bank-Laine function of finite order, with infinitely
many zeros, all real, and denote by n(r) the number of zeros of E in [−r , r ]. Then
n(r) �= o(r) as r → +∞. If, in addition, all zeros of E are positive, then λ(E) ≥ 3/2.

The first assertion of Theorem 1.2 is evidently sharp, because of sin z, and so is
the second, a suitable example having been constructed in [18] using quasiconformal
methods. The next theorem will considerably strengthen Theorem 1.2 in the case
where E is a real Bank-Laine function of finite order with real zeros, these neither
bounded above nor bounded below.
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Theorem 1.3 Let E be a real Bank-Laine function of finite order, with only real zeros,
these neither bounded above nor bounded below, and let A be the associated coefficient
function in (1) and (2). Then one of the following holds:

(i) there exist η, ω1, ω2 ∈ R such that η sin(ω1 − ω2) �= 0 and

A = η2, E(z) = ± sin(ηz − ω1) sin(ηz − ω2)

η sin(ω1 − ω2)
; (5)

(ii) A is transcendental and λ(E) ≥ 3, with ρ(E) = ρ(A) = 3 if λ(E) = 3.

Note that Hellerstein, Shen and Williamson [12] proved that if A is a non-constant
polynomial then (1) cannot have linearly independent solutions with only real zeros
(see also [9,26,27]). A simple example illustrating (i) is given by

A = 1

4
, E(z) = sin z = 2 sin

( z
2

)
cos

( z
2

)
= −2 sin

( z
2

)
sin

( z
2

− π

2

)
,

while E(z) = π−1e2π i z
2
sin π z shows that the hypothesis that E is real entire is not

redundant in Theorem 1.3. The sharpness of the result will be demonstrated in Sect.
4, in which the quasiconformal techniques of [18] will be adapted to construct a real
Bank-Laine function E , whose zeros are real but neither bounded above nor bounded
below, such that E and the function A in (1) and (2) satisfy λ(E) = ρ(E) = ρ(A) = 3.

2 Preliminaries

Let G be a transcendental meromorphic function in the plane and suppose that
G(z)→a∈C ∪ {∞} as z→∞ along a path γ ; then the inverse G−1 is said to have a
transcendental singularity over the asymptotic value a [3,21]. If a ∈ C then for each
ε>0 there exists a component 	=	(a, ε,G) of the set {z ∈ C : |G(z) − a|<ε} such
that γ \ 	 is bounded, and each such 	 is called a neighbourhood of the singular-
ity [3]. Two paths γ, γ ′ on which G(z) → a determine distinct singularities if the
corresponding components 	(a, ε,G), 	′(a, ε,G) are disjoint for some ε > 0. The
singularity is called direct [3] if 	(a, ε,G), for some ε > 0, contains no zeros of
G − a, and logarithmic if there exists ε > 0 such that log 1/(G − a) maps 	(a, ε,G)

conformally onto the half-plane Rew > log 1/ε. Transcendental singularities over∞
may be classified using 1/G.

Denote by B(a, r) the open disc of centre a ∈ C and radius r , and by Cl(D) the
closure, with respect to the finite plane, of D ⊆ C.

Proposition 2.1 Let f1, f2 be linearly independent solutions of (1), in which A is a
transcendental entire function of finite order, and assume that W ( f1, f2) = 1 and the
zeros of E = f1 f2 have finite exponent of convergence. Write

U = f2
f1

,
U ′

U
= W ( f1, f2)

f1 f2
= 1

E
, F(z) = E(z)

z
. (6)
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656 J. K. Langley

Then the following statements hold.

(A) U−1 has finitely many transcendental singularities over finite non-zero values.
(B) U has no critical values and finitely many asymptotic values.
(C) Let	 be a neighbourhood of a transcendental singularity ofU−1 overα ∈ C\{0}.

Then 	 contains a neighbourhood of a direct transcendental singularity of F−1

over∞, as well as a path tending to infinity on whichU (z) → α and F(z) → ∞.
(D) U−1 has infinitely many logarithmic singularities over 0 or ∞.
(E) Let γ be a path tending to infinity on which U (z) tends to 0 or ∞. Then F(z)

tends to 0 on γ .

Proof The fact that U has no critical values is well known, and holds since U ′/U =
1/E �= 0 and all zeros and poles ofU are simple. Thus (B) follows from (A), and (A)
from [17, Thm. 1.3], because the Bank-Laine equation (2) implies that E has finite
order [1].

To prove (C) requires an argument from [18, Lem. 5.2]. Since the singular value α

of U−1 is isolated, the singularity must be logarithmic [21, p. 287]. Hence there exist
M > 0 and a component 	M ⊆ 	 of {z ∈ C : |U (z) − α| < 1/M} which is mapped
univalently by v = log 1/(U (z) − α) onto the half-plane H0 given by Re v > logM .
It may be assumed that M is so large that 	M ∩ B(0, 1) = ∅. Let φ : H0 → 	M be
the inverse function and for v ∈ H0 write

U (z) = α + e−v, E(z) = U (z)

U ′(z)
= α + e−v

−e−v
· φ′(v) = −(1 + αev)φ′(v). (7)

Bieberbach’s theorem and Koebe’s one-quarter theorem [11, Ch. 1] give

∣∣∣∣φ
′′(v)

φ′(v)

∣∣∣∣ ≤ 4

Re v − logM
and

∣∣∣∣φ
′(v)

φ(v)

∣∣∣∣ ≤ 4π

Re v − logM

on H0, and so there exists c1 > 0 such that, as v → +∞ on R, by (7),

|z| = |φ(v)| = o(vc1) = o(ev|φ′(v)|) = o(|E(z)|), z

E(z)
= 1

F(z)
= o(1).

Thus U (z) → α and F(z) → ∞ as z → ∞ on the image under φ of the interval
[2 + logM,+∞). On the other hand, if Re v = 1 + logM then, again by (7),

|F(z)| ≤ (1 + |α|Me)

∣∣∣∣φ
′(v)

φ(v)

∣∣∣∣ ≤ (1 + |α|Me)4π.

Hence there exist large positive M0, M1 and a component C0 of {v ∈ H0 :
|F(φ(v))| > M0} containing an interval [M1,+∞), such that Cl(C0) ⊆ H0, and
φ(C0) is the required neighbourhood of a direct singularity of F−1 over ∞.

Next, (D) follows from (A) and the result of Nevanlinna-Elfving [7,20], which
implies that if U−1 has finitely many transcendental singularities then its Schwarzian
derivative 2A must be a rational function, contrary to hypothesis (see also [16]).

123



Bank-Laine Functions with Real Zeros 657

Finally, to prove (E), take a path γ tending to infinity on which V (z) → ∞, where
V is U or 1/U . Since ∞ is not a limit point of singular values of V−1, a standard
estimate (see [8] or [25, Sect. 6]) gives positive constants c2, c3 such that, as z tends
to infinity on γ ,

1

|F(z)| =
∣∣∣∣ z

E(z)

∣∣∣∣ =
∣∣∣∣ zV

′(z)
V (z)

∣∣∣∣ ≥ c2 log

∣∣∣∣V (z)

c3

∣∣∣∣ → +∞.

�

3 Proof of Theorem 1.3

Suppose that E and A are as in the hypotheses. Then there exist solutions f1, f2 of
(1) such that W ( f1, f2) = 1 and E = f1 f2. Furthermore, A �≡ 0 and each f j has
infinitely many zeros on each of the positive and negative real axes, since f j (z) = 0
gives E ′(z) = (−1) j and the sign of E ′ at successive zeros must alternate.

If A = η2 is constant, then each f j is a linear combination of eiηz and e−iηz ;
moreover, since the f j have infinitely many real zeros, η must be real, and

f j (z) = A j sin(ηz − ω j ), with A j , ω j constants and ω j real, which gives
E(ω1/η) = 0 and forces E ′(ω1/η) = ±1 and (5). Assume henceforth that A is
non-constant.

Lemma 3.1 The function A is transcendental.

Proof This follows from results in [9,12,26,27], and may be proved via the following
slight modification of [18, Lem. 5.1]. Suppose that A is a polynomial in (1), non-
constant by assumption, satisfying A(z) = anzn(1+ o(1)) as z → ∞. Then there are
n + 2 > 2 critical rays given by arg z = θ∗, where anei(n+2)θ∗

is real and positive,
and a combination of the Liouville transformation

Y (Z) = A(z)1/4y(z), Z =
∫ z

A(t)1/2 dt,

withHille’s asymptoticmethod [13] generates linearly independentprincipal solutions
of (1) given by A(z)−1/4e±i Z (1 + o(1)) on sectors symmetric about these rays. On
one side of the critical ray, one of these principal solutions is large, while the other
is small, these roles being reversed as the ray is crossed. Since the f j have infinitely
many positive zeros, the positive real axis must be one of these n+ 2 critical rays, and
each f j must be a non-trivial linear combination of the two principal solutions and
thus large in both adjacent sectors. Let L be the first other critical ray encountered on
moving counter-clockwise from the positive real axis. Then L is not the negative real
axis, as n > 0. Since the f j have only real zeros, both must change from large to small
as L is crossed. But f1, f2 cannot be small in the same sector, becauseW ( f1, f2) = 1.
�

Assume henceforth that A is transcendental, but that λ(E) = λ ≤ 3. Then the
canonical product0 over the zeros of E has orderλ, and there exists a real polynomial
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658 J. K. Langley

P0 with E = 0 exp(P0). If P0 has degree greater than λ, then the zeros of E have
Nevanlinna deficiency δ(0, E) = 1 [10, p. 42], contradicting [6, Thm. 4.1] (see also
[15, Thm. 2.1]). Assume henceforth that E has order ρ(E) = λ ≤ 3: then ρ(A) ≤
λ ≤ 3 by (2).

DefineU and F by (6). SinceU ′/U = 1/E is real, there exists θ ∈ R such thatU =
f2/ f1 = e2iθU0, withU0 real meromorphic. Replacing f1 by f1eiθ and f2 by f2e−iθ

leaves E unchanged; hence it may be assumed that θ = 0 andU is real meromorphic.
By Proposition 2.1, U−1 has finitely many transcendental singularities over finite
non-zero values, but infinitely many transcendental singularities over 0 or ∞.

Lemma 3.2 U−1 has at least four logarithmic singularities over finite non-real values.

Proof Note that it is not asserted that the corresponding four asymptotic values must
all be distinct. Take zeros x0, x1, x2 ∈ R of f2, with 0 < x0 < x1 < x2, and the
supremum R of all r > 0 such that the branch of U−1 mapping 0 to x1 extends
analytically to B(0, r). Then R < +∞ and U maps a simply connected domain 	1,
with x1 ∈ 	1, univalently onto B(0, R). Moreover, U−1 has a singularity over some
α with |α| = R, and so 	1 contains a path γ which tends to infinity, mapped by U
onto the half-open line segment [0, α). If α ∈ R then, since U is real meromorphic
and univalent on 	1, the path γ must be (−∞, x1] or [x1,+∞), a contradiction since
x0, x2 /∈ γ . Hence α /∈ R and so U−1 has logarithmic singularities over α and α, by
Proposition 2.1(B) and [21, p. 287].

Suppose now that U−1 has no other logarithmic singularities over finite non-real
values. Then, without loss of generality, there exist neighbourhoods 	α ⊆ H+ and
	α ⊆ H− of the singularities over α and α respectively, where H+, H− denote the
upper and lower half-planes. The argument of the previous paragraph shows that all but
finitely many zeros of f2 are joined to	α by a path which is mapped byU onto [0, α),
and to	α by a path mapped onto [0, α). Since the set of zeros of f2 is neither bounded
above nor bounded below, this excludes transcendental singularities of U−1 over ∞,
and an almost identical argument applied to f1 rules out transcendental singularities
of U−1 over 0. This contradiction proves the lemma. �

Thus, without loss of generality, there exist disjoint neighbourhoodsU1,U2 ⊆ H+
and U3,U4 ⊆ H− of singularities of U−1 over values α j ∈ C \ R, j = 1, . . . , 4.
Proposition 2.1 delivers for each j a path τ j ⊆ Uj on whichU (z) → α j and F(z) →
∞. Take a circle |z| = R, with R large, which meets all four τ j and on which F has
no zeros. Thus |F(z)| is bounded below on the union of the circle and the τ j . Since
τ1, τ2 lie in neighbourhoods of distinct singularities, whileU has only real poles, there
must exist a path tending to infinity in |z| > R, lying between τ1 and τ2, on which
U (z) → ∞. Because F has only real zeros, Proposition 2.1 nowgives neighbourhoods
Vj ⊆ Uj , for j = 1, . . . , 4, of direct singularities of F−1 over∞, and neighbourhoods
V5 ⊆ H+ and V6 ⊆ H− of direct singularities of F−1 over 0.

This gives positive constantsMj and non-constant, non-negative subharmonic func-
tions u1, . . . , u6, with pairwise disjoint supports Vj , such that u j = log |F/Mj | on
Vj , for j = 1, . . . , 4, while u j = log |Mj/F | on Vj , for j = 5, 6. Thus u1, . . . , u4
have order ρ(u j ) ≤ ρ(F) ≤ ρ(E) = λ(E) ≤ 3. Moreover, u5, u6 have order
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Bank-Laine Functions with Real Zeros 659

ρ(u j ) ≤ ρ(A) ≤ 3, because (2) and Poisson’s formula yield as r → +∞, for
k = 5, 6,

max{uk(z) : |z| = r} ≤ 3

2π

∫ 2π

0
uk(2re

it ) dt ≤ 3m

(
2r ,

1

F

)
+ O(1)

≤ 3m

(
2r ,

1

E

)
+ O(log r) ≤ 3T (2r , A) + O(log r).

For j = 1, . . . , 6 and t > 0 let θ j (t) be the angular measure of {z ∈ C : |z| =
t, u j (t) > 0}. Let S be large and positive: then a well known consequence of Carle-
man’s estimate for harmonic measure [27, pp. 116–117] gives, as r → +∞,

36 log
r

S
=

∫ r

S

⎛
⎝ 6∑

j=1

1

⎞
⎠

2
dt

t
≤

∫ r

S

⎛
⎝ 6∑

j=1

θ j (t)

⎞
⎠

⎛
⎝ 6∑

j=1

1

θ j (t)

⎞
⎠ dt

t

≤ 2
6∑
j=1

∫ r

S

π

tθ j (t)
dt ≤ 2

6∑
j=1

log(max{u j (z) : |z| = 2r}) + O(1)

≤ 2
6∑
j=1

(ρ(u j ) + o(1)) log r ≤ (8λ(E) + 4ρ(A) + o(1)) log r

≤ (36 + o(1)) log r .

It follows at once that λ(E) = ρ(E) = ρ(A) = 3. �

4 A Real Bank-Laine Function with Real Zeros

The construction of an example demonstrating that Theorem 1.3 is sharp starts with
the following.

Lemma 4.1 The Möbius transformation

w = T (v) = eiπ/4(1 + eiπ/4v)

1 − e−iπ/4v
= e−iπ/4(v − ei3π/4)

v − eiπ/4 (8)

satisfies

T (eiπ/4) = ∞, T (ei3π/4) = 0, T (i) = −1, T (0) = eiπ/4, T (∞) = e−iπ/4.

(9)
In addition, T maps the unit circle |v| = 1 onto R ∪ {∞}, with Im T (v) > 0 for
|v| < 1. Moreover, Re v = 0 implies that |T (v)| = 1, while |T (v)| > 1 for Re v > 0,
and T maps the line segment [0, i] onto the counter-clockwise circular arc from eiπ/4

to −1.
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660 J. K. Langley

Proof All assertions follow from (9) and the following observations: first, (8) implies
that |T (v)| > 1 precisely when v is further from ei3π/4 than from eiπ/4; second, as
v describes the positive imaginary axis, w travels around the unit circle from eiπ/4 to
e−iπ/4 via −1. �
Lemma 4.2 Write u = s + i t with s, t ∈ R. Then the locally univalent functions

f1(u) = eiπ/4 exp(
√
2 v), f2(u) = T (v), v = eiu, (10)

have the following properties:

(A) Im f2(u) > 0 for t > 0, and f2 is a piecewise increasing mapping from R to
R ∪ {∞};

(B) f2 has asymptotic values e±iπ/4 and poles at u = (2k + 1/4)π , k ∈ Z, as well
as zeros at u = (2k + 3/4)π , k ∈ Z;

(C) for j = 1, 2, the function log | f j (u)| is positive for −π/2 < s < π/2, and
negative if −3π/2 < s < −π/2 or π/2 < s < 3π/2;

(D) f1 maps the vertical line γ1 given by s = −π onto the open line segment (0, eiπ/4)

and there exists a path γ2, starting at 3π/4 and tending to infinity in the half-strip
π/2 < s < 3π/2, 0 ≤ t < +∞, which is mapped by f2 onto the half-open line
segment [0, eiπ/4).

Proof (A) and (B) follow from Lemma 4.1, as does (C) for f2, while (C) for f1 is an
immediate consequence of the formula log | f1(u)| = √

2e−t cos s. The assertion (D)
for f1 is obvious, while (D) for f2 follows from (A) and analytic continuation of f −1

2 ,
the only singular values of which are the two values omitted by f2, namely e±iπ/4. �

The construction will proceed by first forming, on the sector 0 < arg u < 3π/2,
a quasiregular mapping which is f1(u) for Re u ≤ −π/2 and f2(u) for Re u ≥ π/2.
A modification of this mapping will be pulled back to the first quadrant, which will
then permit extension via double reflection to a quasimeromorphic mapping on the
whole plane. Application of the Teichmüller-Belinskii theorem [19] will result in a
locally univalent meromorphic function U for which E = U/U ′ will be the required
Bank-Laine function. To this end, set

D0 =
{
u ∈ C : 0 < |u| < +∞, 0 < arg u <

3π

2

}
,

D1 = E1 ∪ E2,

E1 =
{
s + i t : −π

2
< s < 0, −∞ < t < +∞

}
,

E2 =
{
s + i t : −π

2
< s <

π

2
, 0 < t < +∞

}
,

D2 =
{
v ∈ C : 0 < |v| < +∞, −π

2
< arg v < 0

}
,

D3 = D2 ∪ {ζ ∈ C : |ζ | < 1, Re ζ > 0},
D4 = {σ + iτ : 0 < σ < +∞, −∞ < τ < π}. (11)

The following is [18, Lem. 6.1].
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Lemma 4.3 ([18]) Let h : (−∞, 1] → (−∞, 0] be a continuous bijection, such
that h(1) = 0 while h′ is continuous and has positive upper and lower bounds for
−∞ < y < 1 (that is, there exists ε > 0 such that ε < h′(y) < 1/ε for−∞ < y < 1).
Then there exists a homeomorphism ψ from the closure of D3 to that of D2, such that:
(A) ψ maps D3 quasiconformally onto D2, with ψ(z) → ∞ and ψ(z) = O(|z|) as
z → ∞ in D3; (B) ψ(iy) = ih(y) for −∞ < y ≤ 1; (C) ψ(z) is real and strictly
increasing as z describes the boundary of D3 clockwise from i to infinity.

�
Lemma 4.4 With D0, D1 as in (11), and the f j as in Lemma 4.2, let E0 = Cl(D0)

and define F on E0 \ D1 by

F(s + i t) = f1(s + i t) for − ∞ < s ≤ −π

2
, t ∈ R,

F(s + i t) = f2(s + i t) for
π

2
≤ s < +∞, 0 ≤ t < +∞. (12)

Then F extends to a mapping from E0 into the extended plane, continuous with respect
to the spherical metric, with the following properties.

(i) H = log F maps D1 quasiconformally onto D4, with H(π/2) = iπ .
(ii) F is locally injective on E0.
(iii) Let L0 be the path consisting of the line segment from 3π/4 to 0 followed by

the negative imaginary axis in the direction of −i∞. Then F(3π/4) = 0 and
F(u) is real and strictly decreasing as u describes L0, mapping L0 onto the non-
positive real axis. Moreover, each u0 ∈ L0 has s0 > 0 such that Im F(u) > 0 on
D0 ∩ B(u0, s0).

(iv) There exists c > 0 such that |F(u)| ≤ exp exp(c|u|) for u ∈ D0 lying on the
circles |u| = nπ , n ∈ N.

Proof First, observe that v = eiu maps D1 onto D3, with v(π/2) = i and v → 0 as
Im u → +∞, as well as v → ∞ as Im u → −∞. Indeed, the boundary of D1 is
mapped by v = eiu as follows: the line Re u = −π/2 to the negative imaginary axis;
the half-line Re u = π/2, 0 ≤ Im u < +∞, to the segment v = iy, 0 < y ≤ 1; the
interval [0, π/2] ⊆ R to the arc of the unit circle from 1 to i ; the negative imaginary
axis to (1,+∞). Using Lemma 4.1 and the principal argument, set

h(y) =
⎧⎨
⎩

π
4 + √

2 y for − ∞ < y ≤ 0,

arg T (iy) = π
4 + arg

(
1+eiπ/4iy
1−e−iπ/4iy

)
= π

4 − i log
(

1+ei3π/4y
1+e−i3π/4y

)
for 0 < y ≤ 1.

(13)
Then h(1) = π and, for 0 < y < 1,

h′(y) = −i

(
ei3π/4

1 + ei3π/4y
− e−i3π/4

1 + e−i3π/4y

)
= 2 sin

( 3π
4

)
|1 + ei3π/4y|2 > 0,

so that limy→1− h′(y) is finite but positive, and limy→0+ h′(y) = √
2, which leads to

h′(0) = √
2. Thus h is a continuous bijection from (−∞, 1] to (−∞, π ] and h′ exists
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and is continuous on (−∞, 1), with positive upper and lower bounds there. Applying
Lemma 4.3 to h(y) − π gives a homeomorphism ψ from the closure of D3 to that
of the quadrant D4 in (11), such that ψ maps D3 quasiconformally onto D4, with
ψ(v) = O(|v|) as v → ∞ in D3 and ψ(iy) = ih(y) for −∞ < y ≤ 1. The function
G = exp ◦ψ is then continuous on Cl(D3) and satisfies, by (13),

G(v) = exp(ih(y)) = eiπ/4 exp(
√
2 iy)

= eiπ/4 exp(
√
2 v) for v = iy,−∞ < y ≤ 0,

G(v) = exp(ih(y)) = T (iy) = T (v) for v = iy, 0 < y ≤ 1. (14)

Now set F(u) = G(eiu) on Cl(D1). Then (8), (10), (12), (14) and the properties
already noted of the mapping v = eiu from D1 to D3 ensure that F is well-defined
and continuous on E0, and that (i) holds. Because ψ is injective on D3, and |F | > 1
on D1, Lemma 4.2(C) implies (ii). To establish (iii), observe first that F(u) = f2(u) is
real and decreases from 0 to −1 as u traverses the line segment from 3π/4 to π/2, by
(9), (10) and Lemma 4.2(A). Next, as u follows L0 from π/2 towards infinity, v = eiu

describes the boundary of D3 clockwise from i to infinity, so that ψ(v) describes
the half-line {σ + iπ : 0 ≤ σ < +∞}, by Lemma 4.3 applied to h(y) − π , and
F(u) = G(v) = exp(ψ(v)) travels from −1 along the negative real axis towards
−∞. Finally, to prove (iv), note first that (12) and Lemma 4.2 show that it is enough to
bound |F(u)| for u ∈ D1, and hence it suffices to consider G(v), which is continuous
on Cl(D3) and satisfies, as v = eiu → ∞ in D3,

|F(u)| = |G(v)| ≤ exp(|ψ(v)|) ≤ exp(O(|v|)) = exp
(
O(|eiu |)

)
≤ exp exp(2|u|).

�
Next, let L be the quasiconformal mapping of the extended plane given by

L(reiθ ) = reig(θ) for r > 0 and 0 ≤ θ ≤ 2π , where g is continuous, strictly
increasing and piecewise linear with

g(θ) = θ for 0 ≤ θ ≤ π

3
, g(π) = π

2
, g(2π) = 2π.

Let E3 be the component of E0 \ (γ1 ∪ γ2) which contains D1, where γ1, γ2 are
as in Lemma 4.2(D), and set V (u) = L(F(u)) for u ∈ E3, with V (u) = F(u) on
E0 \ E3. Since F maps γ1 ∪ γ2 into the segment [0, eiπ/4), on which L is the identity,
V is well-defined and continuous on E0, and quasiregular and non-zero on D0, with
V (u) = F(u) = f2(u) ∈ R∪{∞} on [3π/4,+∞). Furthermore, V maps the path L0
in Lemma 4.4(iii) onto the non-negative imaginary axis, each u0 ∈ L0 having s0 > 0
such that 0 < arg V (u) < π/2 on D0 ∩ B(u0, s0).

Set x0 = (3π/4)2/3 ∈ (0,+∞), and on the quadrant D5 given by 0 < arg z < π/2
write ζ = x0 + z2 and u = η(z) = ζ 3/2, taking the principal branch. Then η maps D5
onto D0 and extends continuously to ∂D5, with 0 mapped to 3π/4, the non-negative
imaginary axis to the path L0, and the non-negative real axis to [3π/4,+∞). Set
Y (z) = V (η(z)) = V ((x0 + z2)3/2) on D5 and extend Y to Cl(D5) by continuity.
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Then Y maps the non-negative real axis into R ∪ {∞}, with Y (0) = V (3π/4) = 0,
and is a bijection from the non-negative imaginary axis to itself. Double reflection,
first across the imaginary axis and then across the real axis, extends Y to the whole
plane. The resulting function is locally injective in the plane, by Lemma 4.2(A) and
the mapping properties of V on L0, and quasimeromorphic [19, Ch. I, Thm. 8.3].
Further, Y now maps R into R ∪ {∞}, and has only real zeros and poles. If x is large
and positive then x is a zero or pole of Y if and only if η(x) ∼ x3 is a zero or pole of
f2. Thus the set of zeros and poles of Y is neither bounded above nor bounded below,
and by Lemma 4.2 the number nY (r) of these in [−r , r ] satisfies

c1r
3 ≤ nY (r) ≤ c2r

3 as r → +∞, (15)

in which the c j denote positive constants. Moreover, Lemma 4.4(iv) gives, for large
n ∈ N,

log+ log+ |Y (z)| = O(n), (16)

initially for z ∈ D5 with |x0 + z2| = (nπ)2/3, and hence by reflection on a Jordan
curve �n on which |z| ∼ (nπ)1/3.

The remainder of the construction proceeds as in [4,18]. Let E4 be the pre-image
in D5 of D6 = {u ∈ D0 : −2π < Re u < 2π} under u = η(z). If E ′

4 = {z ∈ E4 :
|z| > R′}, where R′ is large, then writing z = x + iy, u = κ + iλ, with x, y, κ, λ real,
leads to

∫
E ′
4

1

|z|2 dxdy =
∫

η(E ′
4)

1

|zη′(z)|2 dκdλ =
∫

η(E ′
4)

1

|9z4(x0 + z2)| dκdλ

≤ c3 + c4

∫
u∈D6,|u|>1

1

|u|2 dκdλ < +∞. (17)

Now let F4 be the closure of the union of E4 and its reflections across the real and
imaginary axes. Then Y is meromorphic off F4 and (17) implies that the complex
dilatation μY of Y satisfies

∫
1≤|z|<+∞

∣∣∣∣μY (z)

z2

∣∣∣∣ dxdy ≤
∫
1≤|z|<+∞,z∈F4

1

|z|2 dxdy < +∞. (18)

Let φ be the unique quasiconformal homeomorphism of the extended plane which
solves the Beltrami equation φz = μYφz a.e. and fixes each of 0, 1 and ∞ [19]. In
view of (18) and the Teichmüller-Belinskii theorem [19, Ch. V, Thm. 6.1], there exists
α ∈ C \ {0} with

φ(z) ∼ αz (19)

as z → ∞. Furthermore, there exists a locally univalent meromorphic function U
such that Y = U ◦ φ on C, and writing U1(z) = U (z) gives

U (φ(z)) = Y (z) = Y (z) = U (φ(z)) = U1

(
φ(z)

)
.
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Thus φ(z) and φ(z) have the same complex dilation a.e. and, since both fix 0, 1 and∞,
they must agree, so that φ is real onR andU is real meromorphic. Moreover, all zeros
and poles ofU are real, and E = U/U ′ is a real Bank-Laine function with real zeros,
these neither bounded above nor bounded below. Let 1 and 2 be the canonical
products over the zeros and poles ofU respectively. Then (15) and (19) imply that 1
and 2 have order at most 3, and that the associated coefficient function A in (1) and
(2) cannot be constant. There exists an entire function Q such that

U = 1

2
eQ,

1

E
= U ′

U
= ′

1

1
− ′

2

2
+ Q′. (20)

By (16) and (19), the entire function f0 = 2U satisfies, on the Jordan curve �n ,

| f0(φ(z))| = |2(φ(z))Y (z)| ≤ C0e
|φ(z)|4 exp exp(C1n) ≤ exp exp(C2n),

in which the positive constants C j are independent of n, and so | f0(w)| ≤
exp exp(C2n) for w on φ(�n). Since φ(�n) encloses a circle |w| = C3n1/3, the
maximum principle gives

log T (r , f0) ≤ log logM(r , f0) = O(r3) as r → +∞.

On combination with (20) and the lemma of the logarithmic derivative [10], this leads
to

T (r , Q′) = m(r , Q′) ≤ m

(
r ,

f ′
0

f0

)
+ m

(
r ,

′
1

1

)
+ O(1) = O(r3) as r → +∞.

Hence (20) implies that ρ(E) ≤ 3, and λ(E) = ρ(E) = ρ(A) = 3 by Theorem 1.3.
�

Acknowledgements The author thanks the referees for several helpful suggestions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bank, S., Laine, I.: On the oscillation theory of f ′′ + A f = 0 where A is entire. Trans. Amer. Math.
Soc. 273, 351–363 (1982)

2. Bank, S., Laine, I.: On the zeros ofmeromorphic solutions of second-order linear differential equations.
Comment. Math. Helv. 58, 656–677 (1983)

3. Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite
order. Rev. Mat. Iberoamericana 11, 355–373 (1995)

123

http://creativecommons.org/licenses/by/4.0/


Bank-Laine Functions with Real Zeros 665

4. Bergweiler,W., Eremenko, A.: On the Bank-Laine conjecture. J. Eur.Math. Soc. 19, 1899–1909 (2017)
5. Bergweiler, W., Eremenko, A.: Quasiconformal surgery and linear differential equations. J. Analyse

Math. 137, 751–812 (2019)
6. Drasin, D., Langley, J.K.: Bank-Laine functions via quasiconformal surgery, transcendental dynamics

and complex analysis, In: London Math. Soc. Lecture Notes 348, Cambridge University Press, pp.
165–178 (2008)

7. Elfving, G.: Über eine Klasse von Riemannschen Flächen und ihre Uniformisierung. Acta Soc. Sci.
Fenn. 2, 1–60 (1934)

8. Eremenko, A.E., Lyubich, MYu.: Dynamical properties of some classes of entire functions. Ann. Inst.
Fourier Grenoble 42, 989–1020 (1992)

9. Gundersen, G.G.: On the real zeros of solutions of f ′′ + A(z) f = 0 where f is entire. Ann. Acad.
Sci. Fenn. Ser. A. I. Math. 11, 275–294 (1986)

10. Hayman, W.K.: Meromorphic Functions. Oxford at the Clarendon Press, Oxford (1964)
11. Hayman,W.K.:Multivalent Functions, 2nd Edition, Cambridge Tracts inMathematics 110. Cambridge

University Press, Cambridge (1994)
12. Hellerstein, S., Shen, L.-C., Williamson, J.: Real zeros of derivatives of meromorphic functions and

solutions of second order differential equations. Trans. Amer. Math. Soc. 285, 759–776 (1984)
13. Hille, E.: Ordinary differential equations in the complex domain. Wiley, New York (1976)
14. Laine, I.: Nevanlinna theory and complex differential equations, de Gruyter Studies inMath. 15.Walter

de Gruyter, Berlin/New York (1993)
15. Langley, J.K.: Bank-Laine functions with sparse zeros. Proc. Amer. Math. Soc. 129, 1969–1978 (2001)
16. Langley, J.K.: The Schwarzian derivative and the Wiman-Valiron property. J. Anal. Math. 130, 71–89

(2016)
17. Langley, J.K.: Transcendental singularities for a meromorphic function with logarithmic derivative of

finite lower order. Comput. Methods Funct. Theory 19, 117–133 (2019)
18. Langley J.K: Bank-Laine functions, the Liouville transformation and the Eremenko-Lyubich class. J.

Anal. Math (to appear)
19. Lehto, O., Virtanen, K.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, Berlin (1973)
20. Nevanlinna, R.: Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta Math. 58,

295–373 (1932)
21. Nevanlinna, R.: Eindeutige Analytische Funktionen, 2nd edn. Springer, Berlin (1953)
22. Rossi, J.: Second order differential equations with transcendental coefficients. Proc. Amer. Math. Soc.

97, 61–66 (1986)
23. Shen, L.C.: Solution to a problem of S. Bank regarding the exponent of convergence of the solutions

of a differential equation f ′′ + A f = 0. Kexue Tongbao 30, 1581–1585 (1985)
24. Shen, L.C.: Construction of a differential equation y′′ + Ay = 0 with solutions having prescribed

zeros. Proc. Amer. Math. Soc. 95, 544–546 (1985)
25. Sixsmith, D.J.: Dynamics in the Eremenko-Lyubich class. Conform. Geom. Dyn. 22, 185–224 (2018)
26. Steinmetz, N.: Linear differential equations with exceptional fundamental sets II. Proc. Amer. Math.

Soc. 117(2), 355–358 (1993)
27. Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen, Tokyo (1959)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Bank-Laine Functions with Real Zeros
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.3
	4 A Real Bank-Laine Function with Real Zeros
	Acknowledgements
	References




