Danny Sims-Waterhouse
Uncertainty model for a traceable stereo-photogrammetry system
Sims-Waterhouse, Danny; Isa, Mohammed; Piano, Samanta; Leach, Richard
Authors
Dr MOHAMMED ISA MOHAMMED.ISA@NOTTINGHAM.AC.UK
RESEARCH FELLOW
Professor SAMANTA PIANO SAMANTA.PIANO@NOTTINGHAM.AC.UK
PROFESSOR OF METROLOGY
Professor RICHARD LEACH RICHARD.LEACH@NOTTINGHAM.AC.UK
CHAIR IN METROLOGY
Abstract
Through the computational modelling and experimental verification of a stereo-photogrammetry system, the expanded uncertainty on form measurement was estimated and was found to be , and for a 95% confidence interval (coverage factors of = 3.2, 2.0 and 2.0 respectively) in the x, y and z axis respectively. The contribution of systematic offsets in the system properties was also investigated, demonstrating the complex distortions of the measurement volume that result from these systematic errors. Additionally, a traceable method of applying a scale factor to the reconstruction was demonstrated using a laser interferometer and gauge block. The relative standard uncertainty on the size of the measurements was estimated to be 0.007% corresponding to length measurement uncertainties of around over a 100 mm range. Finally, the residuals from a linear fit of the scale factor were found to exhibit behaviour that would be expected to result from small offsets in the system properties. The outcome of this work is a better understanding of the propagation of uncertainty through the stereo-photogrammetry system as well as highlighting key influence factors that must be addressed in future work.
Citation
Sims-Waterhouse, D., Isa, M., Piano, S., & Leach, R. (2020). Uncertainty model for a traceable stereo-photogrammetry system. Precision Engineering, 63, 1-9. https://doi.org/10.1016/j.precisioneng.2019.12.008
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 16, 2019 |
Online Publication Date | Dec 18, 2019 |
Publication Date | 2020-05 |
Deposit Date | Mar 24, 2021 |
Journal | Precision Engineering |
Print ISSN | 0141-6359 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 63 |
Pages | 1-9 |
DOI | https://doi.org/10.1016/j.precisioneng.2019.12.008 |
Keywords | General Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/4121593 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0141635919306750?via%3Dihub |
You might also like
Applying machine learning to optical metrology: a review
(2024)
Journal Article
Evaluating approximate and rigorous scattering models in virtual coherence scanning interferometry for improved surface topography measurement
(2024)
Presentation / Conference Contribution
Extracting focus variation data from coherence scanning interferometric measurements
(2024)
Journal Article
Comparison of Fourier optics-based methods for modeling coherence scanning interferometry
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search