Skip to main content

Research Repository

Advanced Search

A local sensitivity analysis method for developing biological models with identifiable parameters: Application to cardiac ionic channel modelling

Sher, Anna A.; Wang, Ken; Wathen, Andrew; Maybank, Philip John; Mirams, Gary R.; Abramson, David; Noble, Denis; Gavaghan, David J.

Authors

Anna A. Sher

Ken Wang

Andrew Wathen

Philip John Maybank

David Abramson

Denis Noble

David J. Gavaghan



Abstract

Computational cardiac models provide important insights into the underlying mechanisms of heart function. Parameter estimation in these models is an ongoing challenge with many existing models being overparameterised. Sensitivity analysis presents a key tool for exploring the parameter identifiability. While existing methods provide insights into the significance of the parameters, they are unable to identify redundant parameters in an efficient manner. We present a new singular value decomposition based algorithm for determining parameter identifiability in cardiac models. Using this local sensitivity approach, we investigate the Ten Tusscher 2004 rapid inward rectifier potassium and the Mahajan 2008 rabbit L-type calcium currents in ventricular myocyte models. We identify non-significant and redundant parameters and improve the models by reducing them to minimum ones that are validated to have only identifiable parameters. The newly proposed approach provides a new method for model validation and evaluation of the predictive power of cardiac models. © 2012 Elsevier B.V. All rights reserved.

Citation

Sher, A. A., Wang, K., Wathen, A., Maybank, P. J., Mirams, G. R., Abramson, D., Noble, D., & Gavaghan, D. J. (2013). A local sensitivity analysis method for developing biological models with identifiable parameters: Application to cardiac ionic channel modelling. Future Generation Computer Systems, 29(2), 591-598. https://doi.org/10.1016/j.future.2011.09.006

Journal Article Type Article
Acceptance Date Sep 17, 2011
Online Publication Date Oct 15, 2011
Publication Date 2013-02
Deposit Date Jan 14, 2020
Journal Future Generation Computer Systems
Print ISSN 0167-739X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 29
Issue 2
Pages 591-598
DOI https://doi.org/10.1016/j.future.2011.09.006
Public URL https://nottingham-repository.worktribe.com/output/3217579
Publisher URL https://www.sciencedirect.com/science/article/abs/pii/S0167739X11001725?via%3Dihub