OLA ELBOHY Ola.Elbohy2@nottingham.ac.uk
Research Fellow
Development of Virus-like Particle Plant-Based Vaccines against Avian H5 and H9 Influenza A Viruses
Elbohy, Ola A.; Iqbal, Munir; Daly, Janet M.; Dunham, Stephen P.
Authors
Munir Iqbal
JANET DALY janet.daly@nottingham.ac.uk
Professor of Viral Zoonoses
STEPHEN DUNHAM STEPHEN.DUNHAM@NOTTINGHAM.AC.UK
Associate Professor
Abstract
Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.
Citation
Elbohy, O. A., Iqbal, M., Daly, J. M., & Dunham, S. P. (2024). Development of Virus-like Particle Plant-Based Vaccines against Avian H5 and H9 Influenza A Viruses. Veterinary Sciences, 11(2), Article 93. https://doi.org/10.3390/vetsci11020093
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 13, 2024 |
Online Publication Date | Feb 18, 2024 |
Publication Date | 2024-02 |
Deposit Date | Feb 21, 2024 |
Publicly Available Date | Feb 21, 2024 |
Journal | Veterinary Sciences |
Electronic ISSN | 2306-7381 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 2 |
Article Number | 93 |
DOI | https://doi.org/10.3390/vetsci11020093 |
Keywords | virus-like particles; Nicotiana benthamiana; ELISpot; pseudotyped virus neutralisation test; influenza; plant expression |
Public URL | https://nottingham-repository.worktribe.com/output/31611179 |
Publisher URL | https://www.mdpi.com/2306-7381/11/2/93 |
PMID | 38393111 |
Files
Vetsci-11-00093-v2
(12.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Epidemiological situation and spread of avian influenza H9N2 in poultry in North Africa
(2024)
Journal Article
What can mathematical models bring to the control of equine influenza?
(2013)
Journal Article
The genetics of virus particle shape in equine influenza A virus
(2013)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search