Nicholas P. Holmes
Transcranial magnetic stimulation over supramarginal gyrus stimulates primary motor cortex directly and impairs manual dexterity: implications for TMS focality
Holmes, Nicholas P.; Di Chiaro, Nunzia Valentina; Crowe, Emily M.; Marson, Ben; Göbel, Karen; Gaigalas, Dominykas; Jay, Talia; Lockett, Abigail V.; Powell, Eleanor S.; Zeni, Silvia; Reader, Arran T.
Authors
Nunzia Valentina Di Chiaro
Dr EMILY CROWE Emily.Crowe@nottingham.ac.uk
LEVERHULME TRUST EARLY CAREER FELLOWSHIP
Dr BEN MARSON Ben.Marson@nottingham.ac.uk
Clinical Associate Professor
Karen Göbel
Dominykas Gaigalas
Talia Jay
Abigail V. Lockett
Eleanor S. Powell
Silvia Zeni
Arran T. Reader
Abstract
Based on human motor cortex, the effective spatial resolution of transcranial magnetic stimulation (TMS) is often described as 5-20 mm, because small changes in TMS coil position can have large effects on motor-evoked potentials (MEPs). MEPs are often studied at rest, with muscles relaxed. During muscle contraction and movement, corticospinal excitability is higher, thresholds for effective stimulation are lower, and MEPs can be evoked from larger regions of scalp, so the effective spatial resolution of TMS is larger. We found that TMS over the supramarginal gyrus (SMG) impaired manual dexterity in the grooved pegboard task. It also resulted in short-latency MEPs in hand muscles, despite the coil being 55 mm away from the motor cortex hand area (M1). MEPs might be evoked by either a specific corticospinal connection from SMG or a remote but direct electromagnetic stimulation of M1. To distinguish these alternatives, we mapped MEPs across the scalp during rest, isotonic contraction, and manual dexterity tasks and ran electric field simulations to model the expected M1 activation from 27 scalp locations and four coil orientations. We also systematically reviewed studies using TMS during movement. Across five experiments, TMS over SMG reliably evoked MEPs during hand movement. These MEPs were consistent with direct M1 stimulation and substantially decreased corticospinal thresholds during natural movement. Systematic review suggested that 54 published experiments may have suffered from similar motor activation confounds. Our results have implications for the assumed spatial resolution of TMS, and especially when TMS is presented within 55 mm of the motor cortex.NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS) is often described as having an effective spatial resolution of ∼10 mm, because of the limited area of the scalp on which TMS produces motor-evoked potentials (MEPs) in resting muscles. We find that during natural hand movement TMS evokes MEPs from a much larger scalp area, in particular when stimulating over the supramarginal gyrus 55 mm away. Our results show that TMS can be effective at much larger distances than generally assumed.
Citation
Holmes, N. P., Di Chiaro, N. V., Crowe, E. M., Marson, B., Göbel, K., Gaigalas, D., Jay, T., Lockett, A. V., Powell, E. S., Zeni, S., & Reader, A. T. (2024). Transcranial magnetic stimulation over supramarginal gyrus stimulates primary motor cortex directly and impairs manual dexterity: implications for TMS focality. Journal of Neurophysiology, 131(2), 360-378. https://doi.org/10.1152/jn.00369.2023
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 1, 2024 |
Online Publication Date | Feb 7, 2024 |
Publication Date | Feb 1, 2024 |
Deposit Date | Mar 11, 2024 |
Journal | Journal of Neurophysiology |
Print ISSN | 0022-3077 |
Electronic ISSN | 1522-1598 |
Publisher | American Physiological Society |
Peer Reviewed | Peer Reviewed |
Volume | 131 |
Issue | 2 |
Pages | 360-378 |
DOI | https://doi.org/10.1152/jn.00369.2023 |
Keywords | Corticospinal excitability; manual dexterity; mapping; movement; pegboard |
Public URL | https://nottingham-repository.worktribe.com/output/30411391 |
Additional Information | Received: 2023-10-06; Revised: 2023-12-08; Accepted: 2024-01-01; Published: 2024-02-07 |
You might also like
Online updating of obstacle positions when intercepting a virtual target
(2023)
Journal Article
Slightly perturbing the arm influences choices between multiple targets
(2023)
Journal Article
How similar are responses to background motion and target displacements?
(2022)
Journal Article
Hand movements respond to any motion near the endpoint
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search