Skip to main content

Research Repository

Advanced Search

Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics

Shuttleworth, Joseph G.; Lei, Chon Lok; Whittaker, Dominic G.; Windley, Monique J.; Hill, Adam P.; Preston, Simon P.; Mirams, Gary R.

Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics Thumbnail


Authors

Joseph G. Shuttleworth

Chon Lok Lei

Dominic G. Whittaker

Monique J. Windley

Adam P. Hill

SIMON PRESTON simon.preston@nottingham.ac.uk
Professor of Statistics and Applied Mathematics



Abstract

When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises—models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, ‘information-rich’ protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict—highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.

Citation

Shuttleworth, J. G., Lei, C. L., Whittaker, D. G., Windley, M. J., Hill, A. P., Preston, S. P., & Mirams, G. R. (2024). Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics. Bulletin of Mathematical Biology, 86(1), Article 2. https://doi.org/10.1007/s11538-023-01224-6

Journal Article Type Article
Acceptance Date Oct 9, 2023
Online Publication Date Nov 24, 2023
Publication Date 2024-01
Deposit Date Dec 11, 2023
Publicly Available Date Dec 13, 2023
Journal Bulletin of Mathematical Biology
Print ISSN 0092-8240
Electronic ISSN 1522-9602
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 86
Issue 1
Article Number 2
DOI https://doi.org/10.1007/s11538-023-01224-6
Keywords Discrepancy, Mathematical model, Uncertainty quantification, Misspecification, Ion channel, Experimental design
Public URL https://nottingham-repository.worktribe.com/output/27854307
Publisher URL https://link.springer.com/article/10.1007/s11538-023-01224-6
Additional Information Received: 31 January 2023; Accepted: 9 October 2023; First Online: 24 November 2023

Files








You might also like



Downloadable Citations