Purusothmn Nair S.Bhasker Nair
DECO2—An Open-Source Energy System Decarbonisation Planning Software including Negative Emissions Technologies
Nair, Purusothmn Nair S.Bhasker; Tan, Raymond R.; Foo, Dominic C.Y.; Gamaralalage, Disni; Short, Michael
Authors
Raymond R. Tan
Dominic C.Y. Foo
Dr DISNI GAMARALALAGE Disni.Gamaralalage@nottingham.ac.uk
RESEARCH FELLOW
Michael Short
Abstract
The deployment of CO2 capture and storage (CCS) and negative emissions technologies (NETs) are crucial to meeting the net-zero emissions target by the year 2050, as emphasised by the Glasgow Climate Pact. Over the years, several energy planning models have been developed to address the temporal aspects of carbon management. However, limited works have incorporated CCS and NETs for bottom-up energy planning at the individual plant scale, which is considered in this work. The novel formulation is implemented in an open-source energy system software that has been developed in this work for optimal decarbonisation planning. The DECarbonation Options Optimisation (DECO2) software considers multiperiod energy planning with a superstructural model and was developed in Python with an integrated user interface in Microsoft Excel. The software application is demonstrated with two scenarios that differ in terms of the availabilities of mitigation technologies. For the more conservative Scenario 1, in which CCS is only available in later years, and other NETs are assumed not to be available, all coal plants were replaced with biomass. Meanwhile, only 38% of natural gas plants are CCS retrofitted. The remaining natural gas plants are replaced with biogas. For the more aggressive Scenario 2, which includes all mitigation technologies, once again, all coal plants undergo fuel substitution. However, close to half of the natural gas plants are CCS retrofitted. The results demonstrated the potential of fuel substitutions for low-carbon alternatives in existing coal and natural gas power plants. Additionally, once NETs are mature and are available for commercial deployment, their deployment is crucial in aiding CO2 removal in minimal investment costs scenarios. However, the results indicate that the deployment of energy-producing NETs (EP-NETs), e.g., biochar and biomass with CCS, are far more beneficial in CO2 removal versus energy-consuming NETs (EC-NETs), e.g., enhanced weathering. The newly developed open-source software demonstrates the importance of determining the optimal deployment of mitigation technologies in meeting climate change targets for each period, as well as driving the achievement of net-zero emissions by mid-century.
Citation
Nair, P. N. S., Tan, R. R., Foo, D. C., Gamaralalage, D., & Short, M. (2023). DECO2—An Open-Source Energy System Decarbonisation Planning Software including Negative Emissions Technologies. Energies, 16(4), Article 1708. https://doi.org/10.3390/en16041708
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 1, 2023 |
Online Publication Date | Feb 8, 2023 |
Publication Date | Feb 8, 2023 |
Deposit Date | Mar 30, 2023 |
Publicly Available Date | Apr 5, 2023 |
Journal | Energies |
Electronic ISSN | 1996-1073 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Issue | 4 |
Article Number | 1708 |
DOI | https://doi.org/10.3390/en16041708 |
Keywords | Energy (miscellaneous); Energy Engineering and Power Technology; Renewable Energy, Sustainability and the Environment; Electrical and Electronic Engineering; Control and Optimization; Engineering (miscellaneous); Building and Construction |
Public URL | https://nottingham-repository.worktribe.com/output/17934321 |
Publisher URL | https://www.mdpi.com/1996-1073/16/4/1708 |
Files
DECO2—An Open-Source Energy System Decarbonisation Planning Software including Negative Emissions Technologies
(2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Degradation behavior of palm oil mill effluent in Fenton oxidation
(2018)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search