FRANK BALL frank.ball@nottingham.ac.uk
Professor of Applied Probability
An epidemic model with short-lived mixing groups
Ball, Frank; Neal, Peter
Authors
PETER NEAL Peter.Neal@nottingham.ac.uk
Professor of Statistics
Abstract
Almost all epidemic models make the assumption that infection is driven by the interaction between pairs of individuals, one of whom is infectious and the other of whom is susceptible. However, in society individuals mix in groups of varying sizes, at varying times, allowing one or more infectives to be in close contact with one or more susceptible individuals at a given point in time. In this paper we study the effect of mixing groups beyond pairs on the transmission of an infectious disease in an SIR (susceptible → infective → recovered) model, both through a branching process approximation for the initial stages of an epidemic with few initial infectives and a functional central limit theorem for the trajectories of the numbers of infectives and susceptibles over time for epidemics with many initial infectives. We also derive central limit theorems for the final size of (i) an epidemic with many initial infectives and (ii) a major outbreak triggered by few initial infectives. We show that, for a given basic reproduction number R0, the distribution of the size of mixing groups has a significant impact on the probability and final size of a major epidemic outbreak. Moreover, the standard pair-based homogeneously mixing epidemic model is shown to represent the worst case scenario, with both the highest probability and the largest final size of a major epidemic.
Citation
Ball, F., & Neal, P. (2022). An epidemic model with short-lived mixing groups. Journal of Mathematical Biology, 85(6-7), Article 63. https://doi.org/10.1007/s00285-022-01822-3
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 3, 2022 |
Online Publication Date | Oct 31, 2022 |
Publication Date | Dec 1, 2022 |
Deposit Date | Oct 7, 2022 |
Publicly Available Date | Nov 1, 2023 |
Journal | Journal of Mathematical Biology |
Print ISSN | 0303-6812 |
Electronic ISSN | 1432-1416 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 85 |
Issue | 6-7 |
Article Number | 63 |
DOI | https://doi.org/10.1007/s00285-022-01822-3 |
Keywords | Applied Mathematics; Agricultural and Biological Sciences (miscellaneous); Modeling and Simulation |
Public URL | https://nottingham-repository.worktribe.com/output/12034956 |
Publisher URL | https://link.springer.com/article/10.1007/s00285-022-01822-3 |
Files
Ball_et_al-2022-Journal_of_Mathematical_Biology
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
A stochastic SIR network epidemic model with preventive dropping of edges
(2019)
Journal Article