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Abstract
Almost all epidemic models make the assumption that infection is driven by the inter-
action between pairs of individuals, one of whom is infectious and the other of whom is
susceptible. However, in society individuals mix in groups of varying sizes, at varying
times, allowing one or more infectives to be in close contact with one or more suscep-
tible individuals at a given point in time. In this paper we study the effect of mixing
groups beyond pairs on the transmission of an infectious disease in an SIR (susceptible
→ infective → recovered) model, both through a branching process approximation
for the initial stages of an epidemic with few initial infectives and a functional central
limit theorem for the trajectories of the numbers of infectives and susceptibles over
time for epidemics with many initial infectives. We also derive central limit theorems
for the final size of (i) an epidemic with many initial infectives and (ii) a major out-
break triggered by few initial infectives. We show that, for a given basic reproduction
number R0, the distribution of the size of mixing groups has a significant impact on
the probability and final size of a major epidemic outbreak. Moreover, the standard
pair-based homogeneously mixing epidemic model is shown to represent the worst
case scenario, with both the highest probability and the largest final size of a major
epidemic.
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1 Introduction

An assumption of the general SIR (susceptible → infective → recovered) epidemic
model is that infection occurs through the interactions of pairs of individuals, one of
whom is infectious and the other of whom is susceptible. The rate at which infections
occur is governed by the rate at which pairs of individuals interact and the probability
of transmission during an interaction. These two quantities are often subsumed into
a single rate of infectious contacts made by an infective, with any infectious contact
with a susceptible resulting in infection. This assumption of the epidemic being driven
by pairs of interactions is, at least implicit, in most infectious disease models. The
introduction of population heterogeneities in the form of variability in infectivity and
susceptibility (eg. Neal 2007), metapopulation (eg. Ball and Clancy 1993), household
(eg. Ball et al. 1997) or network (eg. Andersson 1998) models do not depart from the
key assumption that infection is between pairs of individuals. One exception is the
highly infectious household model, see eg. Becker (1995), where once an individual is
infected in a household, their whole household becomes infected. However, this model
is often framed in terms of allowing the within-household infection rate λL → ∞,
and as such represents the limit of the standard household model. Another exception
is the Greenwood chain-binomial model, see eg. Bailey (1975), Chapter 14, which
is a discrete-time model in which the probability that a given susceptible is infected
at a given time depends only on their being infection in the population and not on
the number of infectives. However, that assumption is appropriate only for small
populations such as households.

The role of superspreaders or superspreading events is often mentioned in connec-
tion with the emergence of a disease, see eg. Lau et al. (2017) for Ebola 2014-2015
and Lewis (2021) for Covid-19. Superspreaders are typically taken to be individuals
who are particularly infectious rather than having atypical contacts, see eg. Lloyd-
Smith et al. (2005), although in a network setting the infectiousness of an individual
is linked to the number of neighbours they have in the network. In many countries one
of the most significant NPI (non-pharmaceutical interventions) to reduce the spread
of Covid-19 was the introduction of limits on the size of gatherings outside the home,
see Flaxman et al. (2020). For example, in the UK, mass gatherings such as sporting
events were prohibited and groups were limited in size to 6 individuals, with similar
measures employed elsewhere. The motivation behind such an NPI is that gatherings
of individuals allow the transmission of a disease from a single infective or small
group of infectives to a large group of susceptible individuals. Mass gatherings, such
as a football match, typically take place over a short time period, say two hours, in
comparison to the infectious period of an individual which will usually be several
days. Moreover, individuals infected at a gathering taking place over a time period of
two hours are unlikely to become infectious and start transmitting the disease during
the same gathering. Therefore, we extend the standard SIR epidemic model to assume
that individuals, rather than making contact with single individuals at the points of
a Poisson process, are involved in mixing events at the points of a Poisson process
with mixing events involving c ≥ 2 individuals. If there is at least one infective and
at least one susceptible in a mixing event then there is the possibility of an infection
taking place but multiple infections can take place within a single mixing event. It is
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necessary to model the rate at which mixing events occur and the distribution of the
size of mixing events separately from the transmission of the disease within mixing
events.

In this paper we consider both the early stages of the epidemic through a branching
process approximation and the trajectory of infectives and susceptibles through time in
the event of a major epidemic outbreak. By studying the epidemic process as n → ∞,
we are able to compute key epidemic quantities such as the basic reproduction number,
R0, and the probability of amajor outbreak from the branching process approximation,
and the limiting normal distribution for the final size of a major outbreak through a
time transformed process. We show that for a given R0, both the probability and mean
final size of a major outbreak depend on the distribution of the sizes of mixing events,
with the standard SIR epidemic model with pairwise interactions having both the
highest probability and the largest mean size of a major outbreak amongst all mixing
event distributions. Moreover, for a given R0 > 1 and a single initial infective, the
probability of a major outbreak can vary between 0 and 1 − R−1

0 (its value for the
standard SIR epidemic model) and the mean final size (fraction of the population
infected) can vary between 1 − R−1

0 and τ∗, where τ∗ solves 1 − τ∗ = exp(−R0τ∗)
and is the mean final size of the standard SIR epidemic model. For example, if R0 = 2,
the probability of a major outbreak can range between 0 and 0.5 and the mean final
size of a major outbreak can range between 0.5 and 0.7968.

The remainder of the paper is structured as follows. In Sect. 2, we define the SIR
epidemicmodel withmixing events. Themain results are summarised in Sect. 3, which
include the probability of a major outbreak along with the mean and variance of the
size of a major outbreak for a general mixing event distribution. These results are
asymptotic as the population size n → ∞. In Sect. 4, we obtain important inequalities
which allow us to providemore generally lower and upper bounds for the probability of
extinction and the mean final size, along with orderings of mixing event distributions
enabling us to show the above-mentioned comparisonswith the standard SIR epidemic
model. In Sect. 5, we consider logarithmic and geometric mixing event distributions
which are amenable to analysis and allow us to obtain explicit expressions for the
extinction probability, which further highlight the role of themixing event distribution.
In Sect. 6, we illustrate numerically a selection of the results and use simulations to
show their relevance for finite population sizes, n. The proofs of the results presented
in Sect. 3 are given in Sect. 7. In Sect. 8, we give some concluding comments and
discuss possible directions for future work.

2 Model

Weconsider an SIR epidemic in a population of n individuals inwhich infection occurs
via mixing events that occur at the points of a Poisson process having rate nλ. For
i = 1, 2, . . . , the i th mixing events involvesC (n)

i individuals, whereC (n)
1 , C (n)

2 , . . . are
i.i.d. (independent and identically distributed) realisations of a random variable C (n)

which takes values in a subset of {2, 3, . . . , n}. Suppose C (n)
i = c. Then c individuals

are chosen uniformly at random from the population and at the mixing event any
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Fig. 1 Example of an epidemic outbreak with in a population of size n = 10, with individuals labelled
1, 2, . . . , 10, P(C(n) = 3) = 1 and π3 = 1. Initial condition individual 1 infectious in an otherwise
susceptible population. Mixing events labelled a − g, circles indicate individuals involved. Susceptible
(blue dashed), infectious (red), removed (black dot-dash) (color figure online)

infective present has probability πc of making an infectious contact with any given
susceptible present, with all such contacts occurring independently. Mixing events are
assumed to be instantaneous. Any susceptible who is contacted by at least one infective
at a mixing event becomes infected and remains so for a time that follows an Exp(γ )

distribution, i.e. an exponential distribution with rate γ and hence mean γ −1. There is
no latent period but newly infected individuals cannot infect susceptibles during the
mixing event at which theywere infected. All processes and randomvariables involved
in the above model are mutually independent. The process starts with mn individuals
being infective at time t = 0, with the remaining n − mn being susceptible, and ends
when there is no infective remaining in the population. Denote this epidemic model
by E (n).

An example of a realisation of an epidemic outbreak is presented in Fig. 1 with
n = 10, mn = 1, P(C (n) = 3) = 1 and π3 = 1, so all mixing events are of size 3 and
all susceptibles at a mixing event that contains at least one infective are necessarily
infected at that event. There are 7 mixing events, labelled (a) to (g) in chronological
order, during the time period shown. Mixing event (a) contains only susceptibles so no
new infectives occur. Mixing event (b) involves the initial infective, individual 1, and
two susceptibles, individuals 2 and 4, so the latter two become infected. Mixing event
(c) involves two infectives, individuals 2 and 4, and one susceptible, individual 7, so
individual 7 becomes infected. Mixing event (d) involves one infective, individual 2,
one recovered, individual 4, and one susceptible, individual 5, so the latter becomes
infected. Mixing event (e) involves one infective, individual 5, and two recovered,
individuals 4 and7, sononew infectives occur.Theonly remaining infective, individual
5, recovers between mixing events (e) and (f), so the epidemic terminates.

Note that if P(C (n) = 2) = 1, so all mixing groups necessarily consist of 2 individ-
uals, then E (n) is the standard homogeneously mixing stochastic SIR epidemic model,
with recovery rate γ and individual-to-individual infection rate 2λπ2

n−1 . (If there are s
susceptibles and i infectives in the population, the probability that a mixing group of
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size 2 contains one infective and one susceptible is si/
(n
2

) = 2si
n(n−1) , so the rate at

which new infections occur is nλ × 2si
n(n−1) × π2 = 2λπ2

n−1 si .)
Note also that the groups formed at mixing events are very different from the small

mixing groups in for example the households model. In the latter, these groups are
permanent, while in the present model their duration is instantaneous.

3 Main results

3.1 Introduction

We now present the main results of the paper, which are concerned with the behaviour
of the epidemic model introduced in Sect. 2 as the population size n → ∞. We

assume that C (n) D−→ C as n → ∞, where
D−→ denotes convergence in distribution

and C has probability mass function pC (c) = P(C = c) (c = 2, 3, . . . ). In Sect. 3.2
we consider epidemics with many initial infectives, more precisely the asymptotic
regime n−1mn → ε as n → ∞, where ε > 0. Thus in the limit as n → ∞ a
strictly positive fraction of the population is initially infected. We give a law of large
numbers (LLN), which puts a deterministic approximation of the model on a rigorous
footing (Theorem 3.1) and an associated functional central limit theorem (CLT), which
describes fluctuations about the limiting deterministicmodel for large n (Theorem3.2).
We also give a CLT for the final size of an epidemic (Theorem 3.3).

In Sect. 3.3 we consider epidemics with few initial infectives, more precisely the
asymptotic regime in which mn = m for all sufficiently large n. Thus, for such n, each
epidemic hasm initial infectives. Under these conditions, for suitably large n, the early
stages of the epidemic E (n) can be approximated by a branching process, whichwe use
to determine R0 and the probability that, in the limit n → ∞, an epidemic becomes
established and leads to a major outbreak which infects a strictly positive fraction of
the population. We also present a CLT for the size of a major outbreak (Theorem 3.5).
The conditions for some of the theorems are quite involved, so in Sect. 3.4 we give
simple, easily checkable sufficient conditions which cover most, if not all, practical
applications.

3.2 Epidemics withmany initial infectives

Throughout this section we assume that n−1mn → ε as n → ∞, where ε > 0.

3.2.1 Temporal behaviour

For t ≥ 0, let S(n)(t) and I (n)(t) be respectively the numbers of susceptibles and infec-
tives in E (n) at time t . Throughout the paper, for a vector x ∈ R

d for some specified

d, |x| denotes its Euclidean norm. Further,
p−→ denote convergence in probability.

Theorem 3.1 Suppose that n−1mn → ε, C (n) D−→ C and E[C (n)] → E[C] as n →
∞, where ε > 0 and E[C3] < ∞. Then, for any t0 > 0,
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sup
0≤t≤t0

∣∣
∣n−1(S(n)(t), I (n)(t)) − (x(t), y(t))

∣∣
∣

p−→ 0 as n → ∞,

where (x(t), y(t)) is given by the solution of the following system of ODEs (ordinary
differential equations) with initial condition (x(0), y(0)) = (1 − ε, ε):

dx

dt
= −λxg(y),

dy

dt
= λxg(y) − γ y, (3.1)

where

g(y) =
∞∑

c=2

pC (c)gc(y), (3.2)

with

gc(y) = c
[
1 − (1 − yπc)

c−1
]
. (3.3)

The ODEs (3.1) yield a deterministic approximation to the epidemic E (n). The next
result is concernedwithfluctuations of the sample paths ofE (n) about that deterministic
limit. Let

F(x, y) = (−λxg(y), λxg(y) − γ y), (3.4)

∂F(x, y) =
[−λg(y) −λxg′(y)

λg(y) λxg′(y) − γ

]
(3.5)

and

G(x, y) =
[

λh(x, y) −λh(x, y)

−λh(x, y) λh(x, y) + γ y

]
, (3.6)

where

h(x, y) =
∞∑

c=2

pC (c)hc(x, y), (3.7)

with

hc(x, y) = cx
[
1 − (1 − yπc)

c−1
]

+ c(c − 1)x2
{
1 − 2(1 − yπc)

c−2

+[1 − yπc(2 − πc)]c−2
}

. (3.8)

For 0 ≤ u ≤ t < ∞, let �(t, u) be the solution of the matrix ODE

∂

∂t
�(t, u) = ∂F(x(t), y(t))�(t, u), �(u, u) = I, (3.9)
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where I denotes the 2×2 identitymatrix. For n = 2, 3, . . . , let p(n)
C (c) = P(C (n) = c)

(c = 2, 3, . . . ), so p(n)
C (c) is necessarily zero for c > n.

Theorem 3.2 Suppose that
√

n(n−1mn − ε) → ε0, C (n) D−→ C and E[(C (n))2] →
E[C2] as n → ∞, where ε > 0 and E[C4] < ∞. Suppose also that

lim
n→∞

√
n

∞∑

c=2

c
∣
∣∣p(n)

C (c) − pC (c)
∣
∣∣ = 0. (3.10)

For t ≥ 0, let

V (n)(t) = √
n

[
n−1(S(n)(t), I (n)(t)) − (x(t), y(t))

]
,

where (x(t), y(t)) is as in Theorem 3.1. Then

{V (n)(t) : t ≥ 0} ⇒ {V (t) : t ≥ 0} as n → ∞, (3.11)

where ⇒ denotes weak convergence in the space of right-continuous functions f :
[0,∞) → R

2 having limits from the left (i.e. càdlàg functions), endowed with the
Skorohod metric, and {V (t) : t ≥ 0} is a zero-mean Gaussian process with V (0) =
(−ε0, ε0) and covariance function given by

cov (V (t1), V (t2)) =
∫ min(t1,t2)

0
�(t1, u)G(x(u), y(u))�(t2, u)� du (t1, t2 ≥ 0),

(3.12)

where � denotes transpose.

Note that it follows immediately from (3.12) that

�(t) = var (V (t)) =
∫ t

0
�(t, u)G(x(u), y(u))�(t, u)� du. (3.13)

Differentiating (3.13) and using (3.9) yields that �(t) satisfies the matrix ODE

d�

dt
= G(x(t), y(t)) + ∂F(x(t), y(t))� + �[∂F(x(t), y(t))]�, (3.14)

with initial condition�(0) = 0, the 2×2 matrix of zeros. Thus�(t) can be computed
by numerically solving the ODEs (3.1) and (3.14) simultaneously.

3.2.2 Final outcome

Let T (n) = n−S(n)(∞) be the total number of individuals infected during the epidemic
(including the initial infectives), i.e. its final size. As detailed in Sect. 7.4, we prove a
CLT for T (n) by considering a random time-scale transformation of {(S(n)(t), I (n)(t)) :
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t ≥ 0} in which the clock is slowed down by a factor n−1 I (n)(t). This leads to the
time-transformed deterministic model given by

dx̃

dt
= −λx̃ g̃(ỹ),

d ỹ

dt
= λx̃ g̃(ỹ) − γ, (x̃(0), ỹ(0)) = (1 − ε, ε), (3.15)

where

g̃(y) =
{

y−1g(y) if 0 < y ≤ 1,
∑∞

c=2 pC (c)c(c − 1)πc if y = 0.
(3.16)

Adding the differential equations (3.15) and solving yields

x̃(t) = 1 − ỹ(t) − γ t (t ≥ 0), (3.17)

so ỹ(t) satisfies

d ỹ

dt
= λ(1 − ỹ − γ t)g̃(ỹ) − γ, ỹ(0) = ε. (3.18)

The time transformation does not change the final outcome of the epidemic. Let
τ̃ε = inf{t > 0 : ỹ(t) = 0}, so using (3.17), x̃(τ̃ε) = 1 − γ τ̃ε . Note that x(∞) =
x̃(τ̃ε), so the fraction of the population infected (including the initial infectives) in the
deterministic epidemic given by (3.1), with (x(0), y(0)) = (1−ε, ε), is γ τ̃ε . The CLT
for T (n) is proved by deriving an analogous functional CLT to Theorem 3.2 for the
time-changed process and then considering an associated crossing problem. Before
stating the theorem some more notation is required.

Let

dε = R0(1 − γ τ̃ε)

1 − R0(1 − γ τ̃ε)
, (3.19)

where R0, the basic reproduction number (see Sect. 3.3), is given by

R0 = λ

γ

∞∑

c=2

pC (c)c(c − 1)πc. (3.20)

Let (σ̃ 2
S,ε(t), σ̃SI ,ε(t), σ̃ 2

I ,ε(t)) be the solution of the following system of ODEs with

initial condition (σ̃ 2
S (0), σ̃SI (0), σ̃ 2

I (0)) = (0, 0, 0):

dσ̃ 2
S

dt
= λh̃(x̃(t), ỹ(t)) − 2λ[g̃(ỹ(t))σ̃ 2

S + x̃(t)g̃′(ỹ(t))σ̃SI ], (3.21)

dσ̃SI

dt
= −λh̃(x̃(t), ỹ(t))

+ λ
{

g̃(ỹ(t))σ̃ 2
S + [x̃(t)g̃′(ỹ(t)) − g̃(ỹ(t))]σ̃SI − x̃(t)g̃′(ỹ(t))σ̃ 2

I

}
, (3.22)
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dσ̃ 2
I

dt
= γ + λh̃(x̃(t), ỹ(t)) + 2λ[g̃(ỹ(t))σ̃SI + x̃(t)g̃′(ỹ(t))σ̃ 2

I ], (3.23)

where (x̃(t), ỹ(t)) are given by (3.17) and (3.18), and

h̃(x, y) =
{

y−1h(x, y) if 0 < y ≤ 1,
∑∞

c=2 pC (c)c(c − 1)πcx[1 + (c − 2)πcx] if y = 0.
(3.24)

Let

σ 2
T (ε) = σ̃ 2

S,ε(τ̃ε) − 2dε σ̃SI ,ε(τ̃ε) + d2
ε σ̃ 2

I ,ε(τ̃ε).

For future reference, define τ̃0 and σ 2
T (0) by setting ε = 0 in the above.

For i, j = 0, 1, . . . and y0 > 0, let

S̃1(i, j, y0) =
∞∑

c=2

ciπ
j

c (1 + πc y0)
c pC (c) (3.25)

and

S̃2(i, j, y0) =
∞∑

c=2

ciπ
j

c [1 + πc(2 − πc)y0]c pC (c). (3.26)

The CLT assumes that the following conditions hold:

∞∑

c=2

πcc5 pC (c) < ∞, (3.27)

lim
n→∞

∞∑

c=2

πcc3 p(n)
C (c) =

∞∑

c=2

πcc3 pC (c), (3.28)

lim
n→∞

√
n

∞∑

c=2

πcc2
∣∣∣p(n)

C (c) − pC (c)
∣∣∣ = 0, (3.29)

and there exists y0 > 0 is such that

S̃1(i, i − 1, y0) < ∞ (i = 1, 2, 3) and S̃2(i, i − 2, y0) < ∞ (i = 2, 3).

(3.30)

Theorem 3.3 Suppose that
√

n(n−1mn −ε) → ε0 and C (n) D−→ C as n → ∞, where
ε > 0, and conditions (3.27)–(3.30) are satisfied. Then

√
n

(
n−1T (n) − γ τ̃ε

)
D−→ N(0, σ 2

T (ε)),
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where N(0, σ 2
T (ε)) denotes a normal distribution with mean 0 and variance σ 2

T (ε).

3.3 Epidemics with few initial infectives

Throughout this section, we assume that mn = m for all sufficiently large n. Consider
a typical infective, i∗ say, in the early phase of the epidemic E (n). The probability that
a mixing event of size c involves i∗ is c

n . Mixing events occur at rate nλ and have sizes

that are i.i.d. realisations of C (n), so mixing events that involve i∗ occur at rate λμ
(n)
C ,

where μ
(n)
C = E[C (n)], and, for c = 2, 3, . . . , n, the probability that a mixing event

is of size c given that it includes i∗ is cp(n)
C (c)/μ(n)

C . Moreover, since mixing events
are formed by choosing individuals uniformly at random from the population, with
probability close to 1, every mixing event involving i∗ consists otherwise entirely
of susceptibles. By considering the limits of the above quantities as n → ∞, the
early phase of the epidemic E (n) can be approximated by the following branching
process, denoted byB, in which individuals and birth events correspond respectively
to infectives and mixing events in the epidemic process E (n).

Individuals in the branching processB behave independently. A given individual,
i∗ say, has lifetime L ∼ Exp(γ ), during which they have birth events at the points of
a Poisson process having rate λμC . The numbers of offspring individual i∗ produces
at their successive birth events, Z̃1, Z̃2, . . . , are i.i.d. copies of a random variable Z̃
having distribution defined as follows. The size of a typical mixing event involving i∗
is distributed as C̃ , the size-biased version of C , having probability mass function

pC̃ (c) = P(C̃ = c) = μ−1
C cpC (c) (c = 2, 3, . . . ). (3.31)

If the mixing event is of size c then there are c − 1 susceptibles present, each of
whom is infected independently with probability πc by i∗. Thus, Z̃ is distributed as
a mixture of Bin(c − 1, πc) (c = 2, 3, . . . ) random variables with respective mixing
probabilities pC̃ (c) (c = 2, 3, . . . ), Note that an individual may have no offspring at
a birth event.

Let R denote the total number of offspring a typical individual has inB. Then

R = Z̃1 + Z̃2 + · · · + Z̃G, (3.32)

where G is the number of birth events that an individual has in their lifetime and R = 0
if G = 0. Further, G is independent of Z̃1, Z̃2, . . . and has the geometric distribution

P(G = k) = γ

γ + λμC

(
λμC

γ + λμC

)k

(k = 0, 1, . . . ). (3.33)

Hence,

E[R] = E[G]E[Z̃ ] = λμC

γ
E[(C̃ − 1)πC̃ ] = λ

γ

∞∑

c=2

πcc(c − 1)pC (c), (3.34)
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using (3.31). Note that E[R] = R0, where R0 is given by (3.20). Hence, as stated in
Sect. 3.2.2, R0 is the basic reproduction number of the epidemic E (n).

Let z denote the extinction probability ofB given that initially there is one individ-
ual. Then from standard branching process theory, z is given by the smallest solution in
[0, 1] of fR(s) = s, where fR is the probability-generating function of R; moreover,
z < 1 if and only if R0 > 1. (Throughout the paper, if X is a random variable taking
values in Z+ then fX denotes its probability-generating function, viz. fX (s) = E[s X ]
(0 ≤ s ≤ 1).) It follows from (3.32) and (3.33) that

fR(s) =
∞∑

k=0

γ

γ + λμC

(
λμC

γ + λμC

)k (
f Z̃ (s)

)k = γ

γ + λμC
(
1 − f Z̃ (s)

) ,

(3.35)

where

f Z̃ (s) =
∞∑

c=2

pC̃ (c)(1 − πc + πcs)c−1 = 1

μC

∞∑

c=2

pC (c)c(1 − πc + πcs)c−1.

(3.36)

The Malthusian parameter (exponential growth rate) r of the branching processB
is easily obtained since themean rate an individual produces offspring t time units after
their birth is P(L > t)λμCE[Z̃1] = γ e−γ t R0 (t > 0), so the Lotka-Euler equation is∫ ∞
0 e−r tγ e−γ t R0 dt = 1, yielding

r = γ (R0 − 1).

Note that if R0 and γ are held fixed, then r is the same for all corresponding choices of
the distribution of C and πk (k = 2, 3, . . . ). In particular, under these conditions, the
early exponential growth of an epidemic that takes off is the same as that of a standard
homogeneously mixing epidemic.

The formulae for R0 and fR(s) simplify when the infection probability πc is inde-
pendent of c, say πc = π for all c. In particular, (3.34) then yields

R0 = λπ

γ
E[C(C − 1)]. (3.37)

The approximating branching processB can be put on a rigorous footing by theo-
rems concerning convergence of E (n) toB as n → ∞. However, their proofs are long
and are presented separately in Ball and Neal (under review). The usual approach to
proving such theorems (see e.g. Ball and Donnelly 1995) is to construct sample paths
of E (n) for each n from those of the limiting branching process B. That approach is
not easily implemented in the present setting as mixing groups induce dependencies
between infectives. The following theorem, that is used in the proof of Theorem 3.5
below, is proved in Ball and Neal (under review).
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Theorem 3.4 (a) Suppose that mn = m for all sufficiently large n, C (n) D−→ C and
E[(C (n))2] → E[C2] as n → ∞, where E[C2] < ∞, and conditions (3.10)
and (3.28) hold. Then

P(T (n) ≥ log n) → 1 − zm as n → ∞. (3.38)

(b) If also R0 > 1 then there exists δ > 0 such that

P(T (n) ≥ δn | T (n) ≥ log n) → 1 as n → ∞. (3.39)

In view of Theorem 3.4(a), we define a major outbreak to be one whose final size is
at least log n. Theorem 3.4(b) implies that a major outbreak infects at least a fraction δ

of the population with probability tending to one as n → ∞. However, δ depends on
the parameters of the epidemic E (n) and can be arbitrarily close to 0. The final result
in this section gives a CLT for the size of a major outbreak. Recall the notation τ̃0 and
σ 2

T (0) introduced just after (3.24).

Theorem 3.5 Suppose that R0 > 1, mn = m for all sufficiently large n, C (n) D−→ C
as n → ∞, and conditions (3.27)–(3.30) are satisfied. Then

√
n

(
n−1T (n) − γ τ̃0

)
| T (n) ≥ log n

D−→ N(0, σ 2
T (0)).

3.4 Sufficient conditions for theorems

Simpler, easily checkable sufficient conditions for the above theorems are proved
in Appendix A in the Supplementary Information. If there is a maximum mixing
group size, c∗ say, so P(C (n) > c∗) = 0 for all n, then the conditions concerning
C (n) and C of all of the theorems are satisfied if limn→∞

√
n[p(n)

C (c) − pC (c)] = 0
(c = 2, 3, . . . , c∗). Two natural choices for the distribution of C (n) when there is no

maximum mixing group size are C (n) D= min(C, n) and C (n) D= (C |C ≤ n), where
D= denotes equal in distribution. In both of these cases the conditions concerning C (n)

and C are satisfied if fC (s1) < ∞ for some s1 > 1. This condition requires that C
has finite moments of all orders but it holds for all choices of infection probabilities
πc (c = 2, 3, . . . ). If these probabilities satisfy πc ≤ ζ

c for all sufficiently large c, for
some ζ ∈ (0,∞), then E[C4] < ∞ is sufficient for the conditions concerning C (n)

and C .

4 Model comparisons

4.1 Constant mixing event infection probability�c

In this subsection we assume that πc = π for all c = 2, 3, . . . . Recall that z denotes
the extinction probability of the branching process B. Further, for ε ∈ (0, 1], for a
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sequence of epidemics (E (n)) satisfying limn→∞ n−1mn = ε, τ̃ε is the fraction of the
population that is infected by the epidemic E (n) in the limit as n → ∞. If instead,
mn = m for all sufficiently large n, then τ̃0 is the fraction of the population that is
infected by a major outbreak in the limit as n → ∞.

The following proposition facilitates comparison of the above properties between
epidemics when R0 is held fixed and also calculation/computation of some of these
properties in the special cases considered in Sect. 5. Suppose that E[C2] < ∞ and let
Ĉ be a random variable having probability mass function

pĈ (c) = P(Ĉ = c) = c(c − 1)pC (c)

E[C(C − 1)] (c = 2, 3, . . . ). (4.1)

Proposition 4.1 For 0 ≤ y ≤ 1, let

U (y) = R0

π

∫ 1

1−π y
fĈ−2(x) dx = R0

∫ y

0
fĈ−2(1 − πu) du. (4.2)

(a) The extinction probability z = 1− w, where w is the greatest solution in [0, 1] of
(1 − y)U (y) = y.

(b) For 0 ≤ ε < 1, τ̃ε = inf{t > 0 : ȳ(t) = 0}, where ȳ(t) (t ≥ 0) is the solution of

d ȳ

dt
= (1 − ȳ − t)

1

ȳ
U (ȳ) − 1, ȳ(0) = ε. (4.3)

Proof (a) It follows from (3.35) that fR(s) = (1 + V (s))−1, where

V (s) = λμC

γ
(1 − f Z̃ (s)) = R0

π

∞∑

c=2

cpC (c)

E[C(C − 1)]
[
1 − (1 − π + πs)c−1

]
,

using (3.36) and (3.37). Now 1 − (1 − π + πs)c−1 = (c − 1)
∫ 1
1−π+πs xc−2 dx , so

V (s) = R0

π

∞∑

c=2

pĈ (c)
∫ 1

1−π+πs
xc−2 dx = R0

π

∫ 1

1−π+πs
fĈ−2(x) dx = U (1 − s).

Part (a) follows since z is the smallest solution in [0, 1] of fR(s) = s. (The second
expression forU (y) in (4.2) follows from the first via the substitution u = (1− x)/π .)

(b) Assume without loss of generality that the time scale is chosen so that γ = 1,
whence R0 = λπE[C(C − 1)]. Thus, τ̃ε = inf{t > 0 : ỹ(t) = 0}, where ỹ(t)
(t ≥ 0) satisfies (3.18) with γ = 1, and part (b) follows if λg̃(ỹ) = 1

ỹ U (ỹ) (ỹ ≥ 0).
Using (3.2), (3.3) and (3.16),

λg̃(ỹ) = λ

ỹ

∞∑

c=2

cpC (c)
[
1 − (1 − π ỹ)c−1] = R0

π ỹ

∞∑

c=2

cpC (c)

E[C(C − 1)]
[
1 − (1 − π ỹ)c−1] .
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The same argument as in the proof of part (a) now shows that λg̃(ỹ) = 1
ỹ U (ỹ), as

required. �
Let D denote the space of random variables taking values in {2, 3, . . . } and, for

c = 3, 4, . . . , let Dc be the subspace of D consisting of random variables that take

values in {2, 3, . . . , c}. Recall PGF ordering (
g≤) of random variables. For random

variables C, C ′ ∈ D , C
g≤ C ′ if fC (s) ≥ fC ′(s) for all s ∈ [0, 1]. For c = 2, 3, . . . ,

let Const(c) denote the distribution consisting of a unit mass at c.
Suppose that C ∼ Const(2). Then U (y) = R0y (0 ≤ y ≤ 1) and it follows using

Proposition 4.1 that z = min( 1
R0

, 1). Further, (4.3) becomes

d ȳ

dt
= R0(1 − ȳ − t) − 1, ȳ(0) = ε, (4.4)

having solution

ȳ(t) = 1 − t − (1 − ε)e−R0t (t ≥ 0). (4.5)

Thus τ̃ε = inf{t > 0 : 1− t = (1− ε)e−R0t } (= τ̃ ∗
ε (R0), say). Of course these results

coincide with those of the standard homogeneously mixing SIR epidemic model.
Note that Proposition 4.1 implies that z and τ̃ε (ε ∈ [0, 1)) are determined by

(R0, C, π), so write z = z(R0, C, π) and τ̃ε = τ̃ε(R0, C, π), where it is assumed
implicitly that R0 > 1 if ε = 0.

Theorem 4.1 (a) For any C ∈ D ,

(i) if π > π ′ then z(R0, C, π) ≥ z(R0, C, π ′) and τ̃ε(R0, C, π) ≤ τ̃ε(R0, C, π ′),
with strict inequalities if P(C > 2) > 0;

(ii) z(R0, C, π) → min( 1
R0

, 1) and τ̃ε(R0, C, π) → τ̃ ∗
ε (R0) as π ↓ 0.

(b) Suppose that π ∈ (0, 1] is fixed.

(i) Suppose that C, C ′ ∈ D , C
D�= C ′ and Ĉ ′ g≤ Ĉ. Then z(R0, C, π) ≥

z(R0, C ′, π), with strict inequality if R0 > 1, and τ̃ε(R0, C, π) <

τ̃ε(R0, C ′, π).

(ii) For all C ∈ D satisfying P(C = 2) < 1, z(R0, C, π) ≥ min
(

1
R0

, 1
)

, with

strict inequality if R0 > 1, and τ̃ε(R0, C, π) < τ̃ ∗
ε (R0).

(iii) Fix c ≥ 3 and let C∗ ∼ Const(c). For all C ∈ Dc\{C∗}, z(R0, C, π) ≤
z(R0, C∗, π), with strict inequality if R0 > 1, and τ̃ε(R0, C, π) >

τ̃ε(R0, C∗, π).

Proof (a) Write U (y) as U (y, C, π) to show explicitly its dependence on (C, π).
By Proposition 4.1(a), z(R0, C, π) = 1 − w(R0, C, π), where w(R0, C, π) is the
greatest solution in [0, 1] of (1 − y)U (y, C, π) = y. If R0 ≤ 1, then z(R0, C, π) =
z(R0, C, π ′) = 1. Suppose R0 > 1 and π > π ′. Since fĈ−2 is increasing on [0, 1], it
follows immediately from the second equality in (4.2) thatU (y, C, π) ≤ U (y, C, π ′)
(0 ≤ y ≤ 1), with strict inequality y > 0 provided P(C > 2) > 0. Hence,
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w(R0, C, π) ≤ w(R0, C, π ′), with strict inequality if P(C > 2) > 0, and the inequal-
ity for z follows.

For 0 ≤ ε < 1, let ȳε(t, π) (t ≥ 0) be the solution of (4.3) with U (ȳ) replaced
by U (ȳ, ε). Since U (y, C, π) ≤ U (y, C, π ′) (0 ≤ y ≤ 1), it follows from (4.3)
that ȳε(t, π) ≤ ȳε(t, π ′), for 0 ≤ t ≤ τ(R0, C, π), so τ̃ (R0, C, π) ≤ τ̃ (R0, C, π ′).
Further, τ̃ (R0, C, π) < τ̃ (R0, C, π ′) if P(C > 2) > 0, since then U (y, C, π) <

U (y, C, π ′) (0 < y ≤ 1).
Part (a)(ii) is proved by noting from (4.2) that U (y, C, π) → R0y (0 ≤ y ≤ 1) as

π ↓ 0.

(b) Suppose that Ĉ ′ g≤ Ĉ . Then (4.2) implies that U (y, C, π) ≤ U (y, C ′, π)

(0 ≤ y ≤ 1), and the proof of part (b)(i) parallels that of part (a)(i) in the obvious

fashion. Parts (b)(ii),(iii) are proved by noting that Ĉ∗
g≤ Ĉ

g≤ Ĉ∗, for all C ∈ Dc,
where C∗ ∼ Const(2). �

Theorem 4.1(a) shows that if R0 > 1 and the event size distributionC are held fixed,
then the epidemic increases as the infection probability π decreases, in the sense that
both the probability of and the fraction of the population infected by a major outbreak
increase. Moreover, as π ↓ 0, these properties tend to the corresponding properties
of the standard homogeneously mixing SIR model. (If C ∼ Const(2), so all mixing
events are of size 2, and R0 is held fixed, then the distribution of the final outcome
of the epidemic is independent of π ∈ (0, 1].) Theorem 4.1(b) shows that if R0 > 1
and π ∈ (0, 1] are held fixed, then the epidemic tends to decrease (in the above sense)
as the mixing event size C increases. Moreover, the standard homogeneously mixing
SIR model necessarily provides an upper bound for the model with mixing events.
Furthermore, if there is a maximum mixing event size, cmax say, then the model in
which mixing events have size cmax yields a lower bound.

4.2 Varyingmixing event infection probability�c

Letπ = (π2, π3, . . . ). As before,we assume that R0 is held fixed.Note that z and τ̃ε are
each determined by (R0, C,π), so we write z = z(R0, C,π) and τ̃ε = τε(R0, C,π).
Theorem 4.2 below provides bounds on these quantities. For R0 > 0, define fR0 :
[0,∞) → [0,∞) by fR0(t) = t − 1

R0
(1 − e−R0t ). Note that fR0 is monotonically

increasing and let f −1
R0

be the inverse function of fR0 . As is apparent from the proof of

Theorem 4.2, for R0 > 1 and ε ∈ (0, 1− R−1
0 ), f −1

R0
(ε) is the size (including the initial

infectives) of the standard deterministic homogeneously mixing SIR epidemic having
basic reproduction number R0, when the initial fractions susceptible and infected are
R−1
0 and ε, respectively. Let P denote the set of all possible π .

Theorem 4.2 (a) For any (C,π) ∈ D × P with
∑∞

c=2 pC (c)πc > 0,

z(R0, C,π) ≥ min(R−1
0 , 1) and τ̃ε(R0, C,π) ≤ τ ∗

ε (R0) (ε ∈ [0, 1)).
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(b) Let

a(C,π) = μC∑∞
c=2 pC (c)c(c − 1)πc

.

Then, for any (C,π) ∈ D × P with R0 > 1,

1 − R−1
0 < τ̃0(R0, C,π) ≤ 1 − R−1

0 + f −1
R0

(a(C,π)R0) − a(C,π)R0

(4.6)

and

1

1 + a(C,π)R0
< z < 1. (4.7)

Proof Throughout the proof we assume without loss of generality that γ = 1.
(a) Using (3.36), for 0 ≤ s ≤ 1,

f Z̃ (s) ≥ 1 − 1 − s

μC

∞∑

c=2

pC (c)c(c − 1)πc,

whence, using (3.35) and (3.20), fR(s) ≥ 1/[1 + R0(1 − s)]. Now z is the smallest
solution in [0, 1] of fR(s) = s. Thus z ≥ min(R−1

0 , 1), the smallest solution in [0, 1]
of 1/[1 + R0(1 − s)] = s.

Turning to τ̃ε = τ̃ε(R0, C,π), note from (3.16), (3.2) and (3.3) that, for 0 ≤ y ≤ 1,

g̃(y) = 1

y

∞∑

c=2

pC (c)c
[
1 − (1 − yπc)

c−1
]

≤
∞∑

c=2

pC (c)c(c − 1)πc = R0

λ
.

Now ỹ(t) follows the ODE (3.18), with γ = 1, and τ̃ε = inf{t > 0 : ỹ(t) = 0}.
Hence, by comparison with (4.4), ỹ(t) ≤ ȳ(t) (0 ≤ t ≤ τ̃ε), where ȳ(t) is given
by (4.5). Thus, τ̃ε ≤ τ ∗

ε (R0).
(b) Let ỹ(t) (t ≥ 0) follow (3.18), with γ = 1 and ε = 0. Note that for y > 0,

g̃(y) < y−1 ∑∞
c=2 pC (c)c. Hence, for 0 < t < τ̃0,

d ỹ

dt
= λ(1 − ỹ − t)g̃(ỹ) − 1 <

λ
∑∞

c=2 pC (c)c

ỹ
− 1.

Setting γ = 1 in the expression (3.20) for R0 yields λ = a(C,π)R0/μC . Therefore,

ỹ(t) ≤ a(C,π)R0 for all t ∈ [0, τ̃ ], since d ỹ

dt
< 0 if ỹ > a(C,π)R0.

There exists t0 ∈ (0, τ̃0) such that x̃(t0) = R−1
0 . (This is intuitively clear since

otherwise the epidemic will always be supercritical. A proof that x̃(t) ≥ R−1
0 for

all t ∈ [0, τ̃0] leads to a contradiction is given near (7.36) in Sect. 7.4.) Recall that
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x̃(t) + ỹ(t) = 1− t for all t ≥ 0 and that x̃(t) is monotonically decreasing. It follows
that τ̃0 = 1 − x̃(τ̃0) > 1 − x̃(t0) = 1 − R−1

0 , proving the first inequality in (4.6).
Let x̃0 = R−1

0 and ỹ0 = ỹ(t0). Let (x̌(t), y̌(t)) follow the time-transformed deter-
ministic epidemic obtained by setting γ = 1 in (3.15) but with initial condition
(x̌(0), y̌(0)) = (x̃0, ỹ0). Then x̌(t) + y̌(t) = x̃0 + ỹ0 − t (t ≥ 0), so y̌(t) satsifies

d y̌

dt
= λ(x̃0 + ỹ0 − y̌ − t)g̃(y̌) − 1, y̌(0) = ỹ0.

Let τ̌ (= τ̌ (ỹ0)) = inf{t > 0 : y̌(t) = 0}. Note that τ̃0 = t0 + τ̌ . Further, x̃(t0) +
ỹ(t0) = 1 − t0, so

τ̃0 = 1 − x̃(t0) − ỹ(t0) + τ̌ = 1 − R−1
0 − ỹ0 + τ̌ . (4.8)

It follows from the proof of part (a) that y̌(t) ≤ ȳ(t), for 0 ≤ t ≤ τ̌ , where ȳ(t)
satisfies

d ȳ

dt
= R0(x̃0 + ỹ0 − ȳ − t) − 1, ȳ(0) = ỹ0,

with solution ȳ(t) = ỹ0 + R−1
0 (1 − e−R0t ) − t .

Thus, τ̌ (ỹ0) ≤ f −1
R0

(ỹ0). Further, it is easily verified that τ̌ (ỹ0)− ỹ0 is increasing in

ỹ0. Recall that ỹ0 ≤ a(C,π)R0. Hence, τ̌ (ỹ0)− ỹ0 ≤ f −1
R0

(a(C,π)R0)−a(C,π)R0,
which on substituting into (4.8) yields the second inequality in (4.6).

Turning to (4.7), note that f Z̃ (s) > 0 for s ≥ 0, since R0 > 1 precludes P(Z̃ =
0) = 1. Hence, recalling λ = a(C,π)R0/μC , it follows from (3.35) that fR(s) >

1/[1+a(C,π)R0] for s ∈ [0, 1]. The lower bound for z in (4.7) follows, since z is the
smallest solution in [0, 1] of fR(s) = s. The upper bound is immediate as R0 > 1. �

Theorem 4.2(a) shows that if R0 > 1 is held fixed, the standard homogeneously
mixing epidemic (C ∼ Const(2)) always provides an upper bound for the model with
mixing events. Theorem 4.2(b) provides useful bounds when mixing group sizes can
be large. Suppose that C ∼ Const(c) and πc = π ∈ (0, 1]. Then a(C,π) = 1

(c−1)π .
It follows that when c is large, the probability of a major outbreak is small (0 in the
limit c → ∞) and if one occurs its size is slightly larger than 1 − 1

R0
(its limit as

c → ∞). Thus for large c, in the event of a major outbreak, the epidemic effectively
stops spreading once it becomes critical. More generally, these conclusions hold if
a(C,π) is small.

The proof of Theorem 4.2(b) also has implications for the duration of an epidemic.
The duration of the standard homogeneously mixing epidemic is studied in Barbour
(1975). For epidemics with few initial infectives, a major outbreak can be split into
three phases: an initial phase, the main body of the epidemic and a final phase, during
which the cumulative number infected increases to ε1n, (τ −ε2)n and τn, respectively,
where ε1 and ε2 are both small. For large n, the durations of the initial and final phases
are both of exact order �(log n), and the duration of the middle phase is of exact
order �(1), more precisely the time for x(t) to decrease from 1 − ε1 to τ + ε2 in
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the limiting deterministic model. A similar decomposition holds for the model with
mixing events. The durations of the initial and final phases of a major outbreak, during
which the epidemic can be approximated by a supercritical and a subcritical branching
process, respectively, are again of exact order �(log n). The proof of Theorem 4.2(b)
implies that y(t) ≤ a(C,π)R0 throughout the middle phase, so the duration of the
middle phase is very long if a(C,π) is small, and tends to infinity as c → ∞ in the
above case when all mixing events have size c.

5 Special cases

5.1 Logarithmic event distribution

Suppose that C follows a logarithmic distribution with parameter α ∈ (0, 1), i.e.

pC (c) = κα

(1 − α)c

c
(c = 2, 3, . . .),

where κα = [− log(α)−(1−α)]−1. ThusμC = κα(1−α)2

α
, E[C(C −1)] = κα

( 1−α
α

)2
,

so R0 = λπκα(1−α)2

γα2 . Further,

fĈ−2(s) =
(

α

1 − (1 − α)s

)2

(0 ≤ s ≤ 1). (5.1)

Hence, using (4.2),

U (y) = R0

π

∫ 1

1−π y

(
α

1 − (1 − α)x

)2

dx = R0αy

α + (1 − α)π y
,

and application of Proposition 4.1(a)(ii) yields that, when R0 > 1,

z = α + (1 − α)π

αR0 + (1 − α)π
.

Now fĈ−2(s) is increasing in α for any s ∈ [0, 1] and strictly increasing for
s ∈ [0, 1). It follows using Theorem 4.1(b)(i) that if R0 > 1 and π are held fixed then
both the probability and final size of a major outbreak are increasing in α. Moreover,
these epidemic properties tend to those of the standard SIR model as α → 1. Note
also that, in the notation of Theorem 4.2(b), a(C,π) = α

π
. Thus, by that theorem, the

fraction of the population infected by a major outbreak tends to 1 − R−1
0 as α ↓ 0.
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5.2 Geometric event distribution

Suppose that C follows a Geometric distribution with parameter α ∈ (0, 1], condi-
tioned to be strictly greater than 1, so

pC (c) = (1 − α)c−2α (c = 2, 3, . . .).

Thus μC = 1 + 1
α
. Further, E[C(C − 1)] = 2

α2 , so R0 = 2λπ
γα2 . Also,

fĈ−2(s) =
(

α

1 − (1 − α)s

)3

(0 ≤ s ≤ 1). (5.2)

Hence, using (4.2),

U (y) = R0

π

∫ 1

1−π y

(
α

1 − (1 − α)x

)3

dx = R0αy[2α + (1 − α)π y]
2[α + (1 − α)π y]2 .

Let w be the largest solution in [0, 1] of (1− y)U (y) = y. A little algebra shows that,
if R0 > 1, then w satisfies a quadratic equation and application of Proposition 4.1
yields

z = (1 − α)π [αR0 + 4(α + (1 − α)π)] + 2α2R0 − αρ(α, R0, π)

2(1 − α)π [αR0 + 2π(1 − α)] ,

where ρ(α, R0, π) =
√

[2α + (1 − α)π ]2R2
0 + 8(1 − α)π [α + (1 − α)π ]R0.

The probability-generating function fĈ−2(s) is increasing in α for any s ∈ [0, 1],
so the behaviour of the epidemic properties with α, noted in Sect. 5.1 for logarith-
mic event distributions, hold also for geometric event distributions. Note that, in an
obvious notation, for fixed α ∈ (0, 1), f geom

Ĉ−2
(s) < f log

Ĉ−2
(s) (0 ≤ s < 1). Hence,

by Theorem 4.1(b)(i), if R0 > 1 and α are held fixed, then both the probability and
final size of a major outbreak are greater when the sizes of mixing events follow a
logarithmic distribution than when they follow a geometric distribution.

6 Numerical illustrations

In this section we present numerical results which demonstrate the usefulness of our
CLTs for finite population size n and illustrate themixing group size distribution,mean
mixing group size and π affect model properties. The recovery rate γ = 1 throughout
this section.

In Fig. 2, we consider epidemics in a population of size n = 100, 000 with exam-
ples of a logarithmic and a geometric mixing event distribution with R0 = 2. For
the two mixing event distributions, we plot the trajectories of infectives for the time
interval [0, 20], given by the solution of the ODE (3.1) scaled by the population size
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Fig. 2 Trajectories of the proportion of the population infectived, y(t), over the time interval [0, 20] in
populations of size n = 100, 000 starting with 100 infectives (ε = 0.001) with R0 = 2 and π = 1 for
100 simulations (grey lines), along with the deterministic solution (solid red lines) and 95% equal-tailed
probability intervals (dashed red lines). Left: Logarithmic distribution with α = 0.2, μC = 3.95. Right:
Geometric distribution with α = 0.25, μC = 5. See text for further details (color figure online)

n, together with 95% equal-tailed probability intervals obtained using the functional
CLT, Theorem 3.2 with ε = 0.001 (100 initial infectives). Superimposed on each
mixing event distribution plot are 100 simulations of the epidemic with 100 initial
infectives on the interval [0, 20]. There is very good agreement between the simula-
tions and the asymptotic limits with excellent coverage of the probability intervals by
the simulated trajectories. We note that for the geometric mixing event distribution
two of the simulations experience a delay in becoming established and consequently
their trajectories have peak later. This is a consequence of variability in the early stages
of an epidemic before the number of infectives has increased to a level at which the
deterministic approximation fully takes hold.

In Table 1, we show how as n → ∞ the mean proportion (n−1E[T (n)]) and scaled
variance (n−1var(T (n))) of the final size of amajor outbreak approach their asymptotic
limits obtained from Theorem 3.5. For fixed size mixing groups of size C = 3,
10,000 major outbreaks, each initiated by a single infective, were simulated for each
of the following combinations of R0 (= 1.2, 1.5, 2.0, 3.0), π (= 0.2, 0.5, 1.0) and n
(= 104, 105, 106). For each set of parameter values, a cut-off for what constitutes a
major outbreak for finite n is required. Figure3 shows histograms of the proportion of
the population ever infected in 10,000 simulated epidemics for each of n = 10, 000
and n = 100, 000, when R0 = 1.2, π = 1 and C = 3, with each simulated epidemic
being initiated by 10 infectives. (We initiated the epidemics with 10 rather than one
infective, since with one initial infective very small minor outbreaks dominate the
histograms.) There is a clear distinction between minor and major outbreaks when
n = 100, 000 but when n = 10, 000 there is no clear distinction and the choice of
cut-off is more arbitrary. The vertical red lines show the cut-off used to produce the
corresponding entries in Table 1. The cut-offs for other choices of parameter values
and n were determined by similar examination of histograms. More generally, the
lack of distinction between minor and major outbreaks becomes more pronounced
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Fig. 3 Proportion of population infected by epidemics. Histograms of 10,000 simulations of epidemics in
populations of size n = 10, 000 (left panel) and n = 100, 000 (right panel), with R0 = 1.2, π = 1 and
mixing group size C = 3. All simulated epidemics had 10 initial infectives

Fig. 4 Proportion of the
population infected in a major
outbreak, n−1T (n). Histogram
for 1,000 simulations in
population of size n = 105 with
R0 = 2, π = 0.50 and a
logarithmic mixing event
distribution with α = 0.05
(μC = 8.82). Superimposed is
the probability density function
of N (0.5972, 0.011842), the
approximating normal
distribution. See text for further
details

as the size of mixing groups increases for R0 and π close to 1. Note from Table 1
that there is excellent agreement between the asymptotic and finite n values for the
mean proportion of the population infected by a major outbreak. There is also good
agreement for the variances for all choices of n unless R0 is close to one, in which
case n needs to be larger for the asymptotic results to provide a good approximation.

In Fig. 4, we illustrate the CLT for the final size using 1,000 simulations of major
outbreaks, with a cut-off of = 1, 000, initiated by a single infective in a population of
size n = 100, 000, with R0 = 2,π = 0.50 and a logarithmicmixing event distribution
with α = 0.05 (μC = 8.82). The asymptotic values of n−1E[T (n)] and n−1var(T (n))

are τ̃0 = 0.5972 and σ 2
T (0) = 14.0274, respectively, giving an approximate normal

distribution for the proportion infected as N (0.5972, 0.011842). The superimposed
normal approximation closely matches the histogram of the proportions infected in a
major outbreak.

In Figs. 5 and 6 we show the trajectories of the mean proportion and scaled variance
of susceptibles and infectives over the time interval [0, 20] for logarithmic mixing
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Fig. 5 Trajectories of mean proportions and scaled variances of the numbers of susceptibles x(t) and
infectives y(t) over the time interval [0, 20], for varying π = 0.01, 0.1, 0.25, 0.5, 1.0 with R0 = 2, a
logarithmic mixing event distribution with α = 0.35 (μC = 3.02) and ε = 0.01

event distributions with R0 = 2 and ε = 0.01. In Fig. 5, we vary π between 0.01 and 1
keeping α = 0.35 fixed, so μC = 3.02. In Fig. 6, we fix π = 0.5 and vary α between
0.1 and 1, corresponding to mean mixing event sizes ranging from 5.78 down to 2

(C
D−→ Const(2) as α ↑ 1). We observe that as the final size decreases the epidemic

has a smaller peak and heavier tail corresponding to a longer duration of the epidemic.
This is accompanied by greater variability in the number of susceptibles and infectives
over time. Further, if we vary ε, the initial proportion infected, say to ε = 0.001, the
effect on the mean trajectories is small, approximately corresponding to a time-shift
in the trajectory, but the variance trajectories change significantly, with an increase in
magnitude by a factor of between 5 and 10 at the peak and also a larger distinction
between the two modes in the variance.

In Fig. 7, we demonstrate how the final size (asymptotic mean proportion infected)
of the epidemic, τ̃0, varies with mean mixing event size,μC , mixing event distribution
(logarithmic, geometric and fixed size) and constant π for a fixed R0 = 1.5. We
observe that for all mixing event distributions and choice of π , the final size agrees for
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Fig. 6 Trajectories of mean proportions and scaled variances of the numbers of susceptibles x(t) and
infectives y(t) over the time interval [0, 20], for logarithmic mixing event distributions with varying α =
1, 0.55, 0.35, 0.20, 0.10 (μC = 2.00, 2.49, 3.02, 3.95, 5.78), with R0 = 2, π = 0.5 and ε = 0.01

μC = 2 (all events of size 2) and τ̃0 decreases as μC increases. The decrease in τ̃0 as
μC increases is, as wewould expect, moremarked the larger π is.We also note that the
logarithmicdistributionhas the fastest drop-off, followedby thegeometric distribution,
with the fixed group size experiencing the slowest reduction as the mean event size
grows. We observe that for the logarithmic distribution the final size τ̃0 < 0.35 for
μC = 20, approaching the lower bound of 1 − 1/R0 = 0.3333.

7 Proofs

7.1 Introduction

We prove these theorems by using the theory of density dependent population pro-
cesses (see eg. Ethier and Kurtz (1986), Chapter 11, and Pollett (1990)). In Sect. 7.2,
we explain how ourmodel fits into that framework and state the general LLN and func-
tional CLT that we use (Theorems 7.1 and 7.2, respectively). In Sect. 7.3, we derive the
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Fig. 7 Proportion of individuals
infected, τ̃0, against the mean
mixing event size, μC , for
R0 = 1.5. Solid line –
logarithmic distribution, dashed
line – geometric distribution and
points – fixed size distribution.
π = 0.01 (black), 0.10 (red),
0.25 (green), 0.50 (blue) and
1.00 (purple) (color figure
online)

key limiting drift and variance/covariance functions for application of those theorems
and prove that the conditions of these theorems are satisfied in their application to the
temporal behaviour of epidemics with many initial infectives (Theorems 3.1 and 3.2).
In Sect. 7.4, we consider the CLTs for the final size of epidemics (Theorems 3.3
and 3.5).

7.2 Density dependent formulation

The process {(S(n)(t), I (n)(t))} = {(S(n)(t), I (n)(t)) : t ≥ 0} is a continuous-time
Markov chain with state space E (n) = {(s, i) ∈ Z

2 : s ≥ 0, i ≥ 0, s + i ≤ n}
and possible jumps �(n) = {(0,−1), (−1, 1), (−2, 2), . . . , (−(n − 1), n − 1)}. The
transition intensity for the recovery jump (0,−1) is

q(n)((s, i), (s, i − 1)) = γ i,

and the transition intensities for infection jumps can be given as follows. For c =
2, 3, . . . , n, consider a mixing event of size c that occurs when (S(n)(t), I (n)(t)) =
(s, i), where s, i > 0. For j = 0, 1, . . . , c − 1, let p(n)

c ( j |s, i) be the probability
that this mixing event yields j new infectives. Then, for k = 1, 2, . . . ,min(c, i), the
transition intensity for the jump (−k, k) is

q(n)((s, i), (s − k, i + k)) = nλ

n∑

c=2

P(C (n) = c)p(n)
c (k|s, i) = nλ

n∑

c=2

p(n)
C (c)p(n)

c (k|s, i).

Let l0 = (0,−1) and l j = (− j, j) ( j = 1, 2, . . . ). The transition intensities take
the form

q(n)((s, i), (s, i) + l) = nβ
(n)
l

(
s

n
,

i

n

)
, (7.1)
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for nonnegative continuous functions β
(n)
l : E → R (l ∈ �(n)), where E = {(x, y) ∈

R
2 : x ≥ 0, y ≥ 0, x + y ≤ 1}. Let� = {(0,−1), (−1, 1), (−2, 2), . . . } and suppose

further that

lim
n→∞ β

(n)
l (x, y) = βl (x, y) (l ∈ �, (x, y) ∈ E),

where β
(n)
l : E → R (l ∈ �) are continuous.

Define the drift functions F(n) : E → R
2 and F : E → R

2 by

F(n)(x, y) =
∑

l∈�(n)

lβ(n)
l (x, y) and F(x, y) =

∑

l∈�

lβl (x, y), (7.2)

and suppose that F(n) converges pointwise to F on E as n → ∞. The family of
processes {(S(n)(t), I (n)(t))} (n = 1, 2, . . . ) is asymptotically density dependent as
defined in Pollett (1990), Definition 3.1. (The theory in Pollett (1990) requires the
set E to be open and we define E accordingly in applications.)

Write F(x, y) = [F1(x, y), F2(x, y)], let (x0, y0) ∈ E and ((x(t), y(t)) : t ≥ 0)
be the solution of the system of ODEs

dx

dt
= F1(x, y),

dy

dt
= F2(x, y), (x(0), y(0)) = (x0, y0). (7.3)

The following theorem follows from Pollett (1990), Theorem 3.1.

Theorem 7.1 Suppose that F is Lipschitz continuous on E,

lim
n→∞ n−1(S(n)(0), I (n)(0)) = (x0, y0), (7.4)

and

lim
n→∞ sup

(x,y)∈E
|F(n)(x, y) − F(x, y)| = 0. (7.5)

Then, for any t0 > 0,

sup
0≤t≤t0

∣
∣∣n−1(S(n)(t), I (n)(t)) − (x(t), y(t))

∣
∣∣

p−→ 0 as n → ∞. (7.6)

For (x, y) ∈ E define the infinitesimal variance/covariance matrices

G(n)(x, y) =
∑

l∈�(n)

l�lβ(n)
l (x, y) and G(x, y) =

∑

l∈�

l�lβl (x, y), (7.7)

123



An epidemic model with short-lived mixing groups Page 27 of 40    63 

and let

∂F(x, y) =
⎡

⎢
⎣

∂ F1

∂x
(x, y)

∂ F1

∂ y
(x, y)

∂ F2

∂x
(x, y)

∂ F2

∂ y
(x, y)

⎤

⎥
⎦ .

For 0 ≤ u ≤ t ≤ ∞, let �(t, u) be the solution of the matrix ODE

∂

∂t
�(t, u) = ∂F(x(t), y(t))�(t, u), �(u, u) = I . (7.8)

The following theorem follows from Pollett (1990), Theorem 3.2. The covariance
function for the limiting Gaussian process is taken from Ethier and Kurtz (1986),
Chapter 11, equations (2.19) and (2.21).

Theorem 7.2 Suppose that G is bounded and uniformly continuous on E,

lim
n→∞ sup

(x,y)∈E

∣∣∣G(n)(x, y) − G(x, y)

∣∣∣ = 0, (7.9)

F has uniformly continuous first partial derivatives on E,

lim
n→∞

√
n sup

(x,y)∈E

∣
∣∣F(n)(x, y) − F(x, y)

∣
∣∣ = 0 (7.10)

and

lim
n→∞

√
n

[
n−1(S(n)(0), I (n)(0)) − (x(0), y(0))

]
= v0, (7.11)

where v0 is constant. Then

{√
n

[
n−1(S(n)(t), I (n)(t)) − (x(t), y(t))

]}
⇒ {V (t) : t ≥ 0} as n → ∞,

(7.12)

where {V (t)} is a zero-mean Gaussian process with V (0) = v0 and

cov (V (t1), V (t2)) =
∫ min(t1,t2)

0
�(t1, u)G(x(u), y(u))�(t2, u)� du (t1, t2 ≥ 0).

(7.13)

7.3 Proofs of Theorems 3.1 and 3.2

Wefirst determine the limiting drift and variance/covariance functions F andG. Recall
that in the epidemic in a population of size n, the individuals involved in a given
mixing event of size c are chosen by sampling c individuals uniformly at random
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from the population without replacement. In the limit as n → ∞ this converges to
a corresponding sampling with replacement. For (x, y) ∈ E and c = 2, 3, . . . , let
μc(x, y) = E[Z ] and μc,2(x, y) = E[Z2], where Z is the number of new infectives
created in a mixing event of size c in which each of the c individuals is independently
susceptible, infective or recovered with probabilities x, y and 1− x − y, respectively.

Lemma 7.1 For (x, y) ∈ E and c = 2, 3, . . . ,

μc(x, y) = cx
[
1 − (1 − yπc)

c−1
]

(7.14)

and

μc,2(x, y) = cx
[
1 − (1 − yπc)

c−1
]

+ c(c − 1)x2
{
1 − 2(1 − yπc)

c−2

+[1 − yπc(2 − πc)]c−2
}

. (7.15)

Proof Label the individuals in the mixing event 1, 2, . . . , c. For i = 1, 2, . . . , c, let
χi = 1 if individual i is infected at the mixing event and χi = 0 otherwise, so
Z = χ1 + χ2 + · · · + χc and by exchangeability μc(x, y) = cP(χ1 = 1). Now
χ1 = 1 if and only if individual 1 is susceptible, which occurs with probability x , and
at least one of the individuals 2, 3, . . . , c makes infectious contact with individual 1
at the event, which occurs with probability 1 − (1 − yπc)

c−1. Hence, P(χ1 = 1) =
x[1 − (1 − yπc)

c−1] and (7.14) follows.
By exchangeability, μc,2(x, y) = cP(χ1 = 1) + c(c − 1)P(χ1 = 1, χ2 = 1).

Now χ1 = χ2 = 1 if and only if individuals 1 and 2 are both susceptible, which
occurs with probability x2, and each of individuals 1 and 2 receive infectious contact
from at least one of individuals 3, 4, . . . , c. For i = 1, 2, let ηi = 1 if at least
one of individuals 3, 4, . . . , c make infectious contact with individual i and ηi = 0
otherwise. The probability that both 1 and 2 avoid infectious contact from individual
3 is 1 − y + y(1 − πc)

2, so P(η1 = η2 = 0) = (1 − y + y(1 − πc)
2)c−2. Now

P(η1 = 0) = (1 − yπc)
c−2, so

P(η1 = 1, η2 = 1) = 1 − P({η1 = 0} ∪ {η2 = 0})
= 1 − 2(1 − yπc)

c−2 + [1 − yπc(2 − πc)]c−2,

and (7.15) follows. �
Note that μc(x, y) = xgc(y) and μc,2(x, y) = hc(x, y), where the functions gc

and hc are defined at (3.3) and (3.8), respectively. Since C (n) p−→ C as n → ∞,
where P(C = c) = pC (c) (c = 2, 3, . . . ), it follows from their definitions at (7.2)
and (7.7) that F and G are given by (3.4) and (3.6).

We show via a sequence of lemmas that the conditions of Theorems 7.1 and 7.2 are
satisfied. For i, j = 0, 1, . . . , let

S(i, j) =
∞∑

c=2

ciπ
j

c pC (c).
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Lemma 7.2 (a) Suppose that E[C] < ∞ and S(2, 1) < ∞. Then F is Lipschitz
continuous on E.

(b) Suppose that E[C] < ∞, S(2, 1) < ∞ and S(3, 2) < ∞. Then F has uniformly
continuous first partial derivatives on E.

(c) Suppose that E[C2] < ∞ and S(3, 1) < ∞. Then G is bounded and uniformly
continuous on E.

Proof (a) First note that g′
c(y) = c(c − 1)πc(1 − yπc)

c−2, so 0 ≤ g′
c(y) ≤ c(c −

1)πc (0 ≤ y ≤ 1). Thus
∑∞

c=2 pC (c)g′
c(y) is uniformly convergent on [0, 1], since

S(2, 1) < ∞, so by Bagley (1959), Theorem 1, g′(y) = ∑∞
c=2 πcg′

c(y) for y ∈ [0, 1].
Further 0 ≤ g′(y) ≤ S(2, 1) for all y ∈ [0, 1]. It follows that the partial derivatives of
F are bounded on E , so F is Lipschitz continuous on E .

(b)Note that g′′
c (y) = −c(c−1)(c−2)π2

c (1−yπc)
c−3, so arguing as above g′′(y) =∑∞

c=2 πcg′′
c (y) and −S(3, 2) ≤ g′′(y) ≤ 0 (y ∈ [0, 1]). Hence g′ is uniformly

continuous on [0, 1] and part (b) follows.
(c) Note that 0 ≤ h(x, y) ≤ E[C2] for all (x, y) ∈ E , so G is bounded on E .

Omitting the details, elementary calculus yields that for all (x, y) ∈ E ,

0 ≤ ∂hc

∂x
(x, y) ≤ c(2c − 1) and 0 ≤ ∂hc

∂ y
(x, y) ≤ c(c − 1)(2c − 3)πc.

Since E[C2] < ∞ and S(3, 1) < ∞, it follows that the partial derivatives of h exist
and are bounded on E , so h is uniformly continuous on E , whence so is G. �

We consider now the convergence of F(n) and G(n) to F and G as n → ∞. Let
En = n−1E (n) and note from (7.1) that the transition intensities of {(S(n)(t), I (n)(t))}
require only the values of β

(n)
l (x, y) for (x, y) ∈ En . Thus in defining the functions

β
(n)
l (l ∈ �(n)) we are free to interpolate continuously between the points of En

rather than using the functional form arising from the appropriate hypergeometric
distribution. Recall μc(x, y) and μc,2(x, y) defined just before Lemma 7.1. For c =
2, 3, . . . , n = c, c + 1, . . . and (x, y) ∈ En consider a mixing event of size c in a
population of size n that contains s = nx susceptibles and i = ny infectives. Let Zn

be the number of new infectives created at this mixing event, μ(n)
c (x, y) = E[Zn] and

μ
(n)
c,2(x, y) = E[Z2

n].
Lemma 7.3 (a) For c = 2, 3, . . . , n = c, c + 1, . . . and all (x, y) ∈ En,

|μ(n)
c (x, y) − μc(x, y)| ≤ c2(c − 1)

2n
and |μ(n)

c,2(x, y) − μc,2(x, y)| ≤ c3(c − 1)

2n
.

(7.16)

(b) The functions β
(n)
l can be defined using continuous interpolation between the

points of En, so that for c = 2, 3, . . . , n = c, c + 1, . . . and all (x, y) ∈ E,

|μ(n)
c (x, y) − μc(x, y)| ≤ c3

n
and |μ(n)

c,2(x, y) − μc,2(x, y)| ≤ c4

n
.

(7.17)
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Proof (a) Fix c ∈ {2, 3, . . . } and n ∈ {c, c + 1, . . . }, and for given (x, y) ∈ En define
coupled realisations of Zn and Z as follows. Label the individuals in the population
1, 2, . . . , n, so nx of these individuals are susceptible, ny are infective and n(1−x − y)

are recovered, and let ζ
(n)
1 , ζ

(n)
2 , . . . be i.i.d. discrete uniform random variables on

{1, 2, . . . , n}. For Z the disease status of the c individuals in themixing event are given
by those of ζ

(n)
1 , ζ

(n)
2 , . . . , ζ

(n)
c . For Zn they are given by the disease status of the first

c distinct individuals in ζ
(n)
1 , ζ

(n)
2 , . . . . Let Dn be the event that ζ

(n)
1 , ζ

(n)
2 , . . . , ζ

(n)
c are

distinct. If Dn occurs the spread of infection is coupled so that Zn = Z . The precise
construction of (Zn, Z) when Dn does not occur is not needed for our argument. For
an event, D say, 1D denotes its indicator function. Now

E[Zn] = E[Zn1Dn ] + E[Zn1Dc
n
] and E[Z ] = E[Z1Dn ] + E[Z1Dc

n
].
(7.18)

Further, E[Zn1Dn ] = E[Z1Dn ] by construction and 0 ≤ Z , Zn ≤ c, so

|E[Zn] − E[Z ]| = |E[Zn1Dc
n
] − E[Z1Dc

n
]| ≤ cP(Dc

n).

Also,

P(Dc
n) = 1 −

c−1∏

i=1

(
1 − i

n

)
≤

c−1∑

i=1

i

n
= c(c − 1)

2n
. (7.19)

The first inequality in (7.16) follows. The second one is proved similarly using 0 ≤
Z2, Z2

n ≤ c2.
(b) Fix n. Since the two inequalities in part (a) hold for all (x, y) ∈ En , and βl

(l ∈ �), μc and μc,2 are continuous on E , β
(n)
l (l ∈ �(n)) may be interpolated

continuously between the points of En so that the two inequalities in (7.17) hold for
all (x, y) ∈ E . �

For n = 2, 3, . . . and (x, y) ∈ E , let

ḡ(n)(x, y) =
n∑

c=2

p(n)
C (c)μ(n)

c (x, y) and h(n)(x, y) =
n∑

c=2

p(n)
C (c)μ(n)

c,2(x, y).

Observe, using (7.2) and (7.7), that

F(n)(x, y) = (−λḡ(n)(x, y), λḡ(n)(x, y) − γ y) and G(n)(x, y)

=
[

λh(n)(x, y) −λh(n)(x, y)

−λh(n)(x, y) λh(n)(x, y) + γ y

]
. (7.20)
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Lemma 7.4 Suppose that C (n) D−→ C as n → ∞.

(a) If E[C (n)] → E[C] as n → ∞ and E[C3] < ∞ then

lim
n→∞ sup

(x,y)∈E

∣∣∣ḡ(n)(x, y) − xg(y)

∣∣∣ = 0. (7.21)

(b) If E[(C (n))2] → E[C2] as n → ∞ and E[C4] < ∞ then

lim
n→∞ sup

(x,y)∈E

∣∣
∣h(n)(x, y) − h(x, y)

∣∣
∣ = 0. (7.22)

(c) If limn→∞
√

n
∑∞

c=2 c|p(n)
C (c) − pC (c)| = 0 and E[C3] < ∞ then

lim
n→∞

√
n sup

(x,y)∈E

∣∣
∣ḡ(n)(x, y) − xg(y)

∣∣
∣ = 0. (7.23)

Proof (a) Note that p(n)
C (c) = 0 for c > n. Thus,

sup
(x,y)∈E

∣∣
∣ḡ(n)(x, y) − xg(y)

∣∣
∣ = sup

(x,y)∈E

∣∣∣
∣∣

∞∑

c=2

p(n)
C (c)μ(n)

c (x, y) −
∞∑

c=2

pC (c)μc(x, y)

∣∣∣
∣∣

≤ sup
(x,y)∈E

∣∣
∣∣∣

∞∑

c=2

[
p(n)

C (c)μ(n)
c (x, y) − pC (c)μ(n)

c (x, y)
]
∣∣
∣∣∣

+ sup
(x,y)∈E

∣∣
∣∣∣

∞∑

c=2

[
pC (c)μ(n)

c (x, y) − pC (c)μc(x, y)
]
∣∣
∣∣∣

≤ sup
(x,y)∈E

∞∑

c=2

μ(n)
c (x, y)

∣∣
∣p(n)

C (c) − pC (c)
∣∣
∣

+ sup
(x,y)∈E

∞∑

c=2

pC (c)
∣∣∣μ(n)

c (x, y) − μc(x, y)

∣∣∣

≤
∞∑

c=2

c
∣∣∣p(n)

C (c) − pC (c)
∣∣∣ +

∞∑

c=2

pC (c)
c3

n
, (7.24)

where at the final step we have used μ
(n)
c (x, y) ≤ c for all (x, y) ∈ E in the first

inequality and Lemma 7.3(b) in the second inequality. Now limn→∞ cp(n)
C (c) =

cpC (c) for each c = 2, 3, . . . , so limn→∞
∑∞

c=2 c
∣∣∣p(n)

C (c) − pC (c)
∣∣∣ = 0 by Scheffé’s

lemma, since E[C (n)] → E[C] as n → ∞. Also,
∑∞

c=2 pC (c) c3
n → 0 as n → ∞,

since E[C3] < ∞, and (7.21) follows.
(b) This is analogous to the proof of part (a).
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(c) Arguing as in the proof of part (a) yields (c.f. (7.24))

√
n sup

(x,y)∈E

∣
∣∣ḡ(n)(x, y) − xg(y)

∣
∣∣ ≤ √

n
∞∑

c=2

c
∣
∣∣p(n)

C (c) − pC (c)
∣
∣∣ + √

n
∞∑

c=2

pC (c)
c3

n
.

(7.25)

As n → ∞, the first term on the right-hand side of (7.25) tends to 0 by assumption
and the second term tends to 0 as E[C3] < ∞, so (7.23) follows. �

We now use the above lemmas to show that the conditions of Theorems 7.1 and 7.2
are satisfied. Note from the proofs of those theorems that the conditions on F, G, F(n)

and G(n) only need to be satisfied in an open neighbourhood of the limiting trajectory
((x(t), y(t)) : t ≥ 0); see eg. the first line of the proof of Ethier and Kurtz (1986),
Theorem 11.2.1. For any t0 > 0, the trajectory ((x(t), y(t)) : 0 ≤ t ≤ t0) is con-
tained in the interior Eo of E , since ε > 0, so we may use Eo in the definition of
{(S(n)(t), I (n)(t))} (n = 1, 2, . . . ) as an asymptotically density dependent family.

To prove Theorem 3.1, note that F is Lipschitz continuous on E by Lemma 7.2(a),
since S(2, 1) < E[C2] < ∞, and that condition (7.4) is satisfied by assumption.
Further, recalling (7.20), Lemma 7.4(a) shows that condition (7.5) is satisfied. Thus
all the conditions of Theorem 7.1 are satisfied and Theorem 3.1 follows.

Turning to Theorem 3.2, condition (7.9) is satisfied using Lemma 7.4(b) and (7.20),
and G is bounded and uniformly continuous on E by Lemma 7.2(c), since S(3, 1) <

E[C3]. Condition (7.10) is satisfied using Lemma 7.4(c) and (7.20), and F has uni-
formly continuous first partial derivatives on E by Lemma 7.2(b), since S(2, 1) <

E[C2] and S(3, 2) < E[C3]. Finally, condition (7.11) is satisfied by assumption, so
Theorem 3.2 follows.

7.4 Proofs of Theorems 3.3 and 3.5

The final size T (n) of E (n) is given by T (n) = n − S(n)(τ (n)), where τ (n) = inf{t >

0 : I (n)(t) = 0}. We study the asymptotic distribution of T (n) via the exit of the
process {(S(n)(t), I (n)(t))} from E (n)

+ , the set of states in E (n) with i > 0. Under the

conditions of Theorem 3.3, τ (n) p−→ ∞ as n → ∞, so to obtain a process which exits
E (n)

+ in finite time in the limit as n → ∞, we consider {(S̃(n)(t), Ĩ (n)(t))}, a random
time-scale transformation of {(S(n)(t), I (n)(t))} in which, at any time t ≥ 0, the clock
is slowed down by a factor n−1 I (n)(t). Thus {(S̃(n)(t), Ĩ (n)(t))} is a continuous-time
Markov chain with transition intensities (cf. (7.1)) satisfying, for (s, i) ∈ E (n)

+ and
l ∈ �(n),

q̃(n)((s, i), (s, i) + l) = n

i
q(n)((s, i), (s, i) + l) = nβ̃

(n)
l

(
s

n
,

i

n

)
, (7.26)

where β̃
(n)
l (x, y) = y−1β

(n)
l (x, y) (l ∈ �(n), (x, y) ∈ E (n)

+ ). The use of such random
time-scale transformations in epidemic modelling goes back to Watson (1980).
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The jump chains of {(S(n)(t), I (n)(t))} and {(S̃(n)(t), Ĩ (n)(t))} coincide, so T (n) D=
n − S̃(n)(τ̃ (n)), where τ̃ (n) = inf{t > 0 : Ĩ (n)(t) = 0}. To determine the asymptotic
distribution of S̃(n)(τ̃ (n)) it is fruitful to define the process {(S̃(n)(t), Ĩ (n)(t))} beyond
time τ̃ (n), which involves allowing Ĩ (n)(t) to be negative. For y0 ∈ (0,∞), let

Ẽ (n)(y0) = E (n) ∪ {(s, i) : 0 ≤ s ≤ n,−y0n ≤ i < 0},

Ẽn(y0) = n−1 Ẽ (n)(y0) and Ẽ(y0) = E ∪ ([0, 1] × [−y0, 0)). For l ∈ �, extend the
domain of βl from E to Ẽ(y0) by adopting the same functional form. For l ∈ �(n)

and (x, y) ∈ Ẽ (n)(y0), now let {S̃(n)(t), Ĩ (n)(t))} have transition intensities given by

q̃(n)((s, i), (s, i) + l) = nβ̃
(n)
l

(
s

n
,

i

n

)
,

where

β̃
(n)
l (x, y) =

{
y−1β

(n)
l (x, y) if (x, y) ∈ n−1E (n)

+ ,

y−1βl (x, y) otherwise .
(7.27)

It is possible that βl (x, y) < 0 for some (x, y) with y < 0. If so, replace l
by l ′ = −l and define βl ′(x, y) = −βl (x, y) for such (x, y). This change, which is
assumed implicitly in the following, does not effect the resulting infinitesimal drift and
variance/covariance functions. In (7.27), y−1βl (x, y) is defined by continuity when
y = 0. It is immediate that the limit exists for recovery jumps, while for infection
jumps the limit exists as for a mixing event to yield new infectives at least one of
its members must be an infective. For l ∈ �, define β̃l by β̃l (x, y) = y−1βl (x, y)

((x, y) ∈ Ẽ(y0)).
The limiting infinitesimal drift and variance/covariance of {S̃(n)(t), Ĩ (n)(t))} are

F̃(x, y) = (−λx g̃(y), λx g̃(y) − γ ) and G̃(x, y) =
[

λh̃(x, y) −λh̃(x, y)

−λh̃(x, y) λh̃(x, y) + γ

]
,

(7.28)

where

g̃(y) =
∞∑

c=2

pC (c)g̃c(y) and h̃(x, y) =
∞∑

c=2

pC (c)h̃c(x, y),

with, for c = 2, 3, . . . ,

g̃c(y) =
{

c
y [1 − (1 − πc y)c−1] if y �= 0,

c(c − 1)πc if y = 0,
(7.29)
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and

h̃c(x, y) =
{

x g̃c(y) + c(c−1)x2

y

{
1 − 2(1 − yπc)

c−2 + [1 − yπc(2 − πc)]c−2
}

if y �= 0,

c(c − 1)πcx + c(c − 1)(c − 2)π2
c x2 if y = 0.

(7.30)

The limiting time-transformed deterministic model is given by (3.15). Suppose that
ε ∈ (0, 1), as in Theorem 3.3, let τ̃ε = inf{t > 0 : ỹ(t) = 0} and, for y0 > 0, let
τ̃ε(y0) = inf{t > 0 : ỹ(t) = −y0}. Note that (3.15) implies that x̃(t) > 0 for all
t ≥ 0. Hence, using (3.17), τ̃ε(y0) < ∞ for all y0 ≥ 0. Suppose instead that ε = 0,
as in Theorem 3.5. Then, using the expression for R0 at (3.20), it follows from (3.15)
that ỹ′(0) = γ (R0 − 1). Let τ̃0 = inf{t > 0 : ỹ(t) = 0}, where τ̃0 = ∞ if ỹ < 0 for
all t > 0. If R0 > 1, as in Theorem 3.5, then τ̃0 ∈ (0,∞). The above argument shows
that τ̃0(y0) = inf{t > 0 : ỹ(t) = −y0} is finite for all y0 > 0.

The following theorem is proved via an analogous sequence of lemmas to those used
in the proof of Theorem 3.2. The proofs of the lemmas corresponding to Lemmas 7.2
and 7.4 are obvious generalisations, although the details are more involved. The proof
of the lemma corresponding to Lemma 7.3 is less immediate. Details may be found
in Appendix B in the Supplementary Information.

Theorem 7.3 Suppose that
√

n(n−1mn −ε) → ε0 and C (n) D−→ C as n → ∞, where
ε ≥ 0. Suppose further that conditions (3.27)-(3.30) are satisfied. For t ≥ 0, let

Ṽ
(n)

(t) = √
n

[
n−1(S̃(n)(t), Ĩ (n)(t)) − (x̃(t), ỹ(t))

]
,

where (x̃(t), ỹ(t)) is given by the solution of (3.15). Then, for any 0 < t0 < τ̃ε(y0),

{Ṽ (n)
(t) : 0 ≤ t ≤ t0} ⇒ {Ṽ (t) : 0 ≤ t ≤ t0} as n → ∞, (7.31)

where {Ṽ (t) : 0 ≤ t ≤ t0} is a zero-mean Gaussian process with Ṽ (0) = (−ε0, ε0)

and variance

�̃(t) = var
(
Ṽ (t)

)
=

[
σ̃ 2

S,ε(t) σ̃SI ,ε(t)
σ̃SI ,ε(t) σ̃ 2

I ,ε(t)

]
, (7.32)

where (σ̃ 2
S,ε(t), σ̃SI ,ε(t)σ̃ 2

I ,ε(t)) is given by the solution of the system of ODEs (3.21)

- (3.23) with initial condition (σ̃ 2
S (0), σ̃SI (0), σ̃ 2

I (0)) = (0, 0, 0).

Recall that we wish to determine the asymptotic distribution of T (n) D= n −
S̃(n)(τ̃ (n)), where τ̃ (n) = inf{t > 0 : Ĩ (n)(t) = 0}. We now cast the associated
boundary crossing problem into the framework of Ethier and Kurtz (1986), Theorem
11.4.1.

Let ϕ : Ẽ(y0) → R be defined by ϕ(x, y) = y. Then τ̃ (n) = inf{t ≥ 0 :
ϕ(S̃(n)(t), Ĩ (n)(t)) ≤ 0}, τ̃ε = inf{t ≥ 0 : ϕ(x̃(t), ỹ(t)) ≤ 0} and, when ε > 0,
ϕ(x̃(0), ỹ(0)) > 0. Then, if τ̃ε < ∞ and ∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) · F̃(x̃(τ̃ε), ỹ(τ̃ε)) < 0,
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where · denotes inner vector product, it follows fromEthier andKurtz (1986), Theorem
11.4.1, and Theorem 7.3 that, as n → ∞,

√
n

(
n−1(S̃(n)(τ̃ (n)), Ĩ (n)(τ̃ (n)))) − (x̃(τ̃ε), ỹ(τ̃ε))

)

D−→ V (τ̃ε) − ∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) · Ṽ (τ̃ε)

∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) · F̃(x̃(τ̃ε), ỹ(τ̃ε))
F̃(x̃(τ̃ε), ỹ(τ̃ε)).

(7.33)

Hence, as n → ∞,

√
n

(
n−1(S̃(n)(τ̃ (n)), Ĩ (n)(τ̃ (n)))) − (x̃(τ̃ε), ỹ(τ̃ε))

)
D−→ N(0, B�̃(τ̃ε)B�),

(7.34)

where �̃(τ̃ε) is given by (7.32) and

B = I − F̃(x̃(τ̃ε), ỹ(τ̃ε))
�∇ϕ(x̃(τ̃ε), ỹ(τ̃ε))

∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) · F̃(x̃(τ̃ε), ỹ(τ̃ε))
.

Now ỹ(τ̃ε) = 0, so using (3.17), x̃(τ̃ε) = 1 − γ τ̃ε . Hence, using (7.28),

F̃(x̃(τ̃ε), ỹ(τ̃ε)) = (−γ R0(1 − γ τ̃ε), γ R0(1 − γ τ̃ε) − γ ), (7.35)

since, from (3.16) and (3.20), g̃(0) = γ λ−1R0. Further, ∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) = (0, 1),
so

a = ∇ϕ(x̃(τ̃ε), ỹ(τ̃ε)) · F̃(x̃(τ̃ε), ỹ(τ̃ε)) = γ (R0(1 − γ τ̃ε) − 1)

= γ (R0 x̃(τ̃ε) − 1).

Now x̃(t) is strictly decreasing with t , since g̃c(y) > 0 for y ∈ (−∞, 1) and c =
2, 3, . . . . Thus a < 0 if R0 x̃(0) ≤ 1.

To show that a < 0 when R0 x̃(0) > 1. Suppose for contradiction that a ≥ 0. Then,
since x̃(t) is decreasing with t , it follows from (7.36) that x̃(t) ≥ R−1

0 for 0 ≤ t ≤ τ̃ε ,
so recalling (3.15), ỹ(t) ≥ ŷ(t) (0 ≤ τ̃ε), where ŷ(t) is the solution of the ODE

d ŷ

dt
= λR−1

0 g̃(ŷ) − γ, ŷ(0) = ε. (7.36)

For c = 2, 3, . . . and y ∈ [0, 1],

g̃c(y) ≥ c(c − 1)πc − c(c − 1)(c − 2)π2
c y

2
,
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whence

g̃(y) ≥
∞∑

c=2

pC (c)c(c − 1)πc − y

2

∞∑

c=2

pC (c)c(c − 1)(c − 2)π2
c = γ R0

λ
− R0by

λ
,

where

b = λ

2R0

∞∑

c=2

pC (c)c(c − 1)(c − 2)π2
c .

Now b < ∞, since S̃1(3, 2, y0) < ∞, so using (7.36), ŷ(t) ≥ ȳ(t) (0 ≤ τ̃ε) where
ȳ(t) solves

d ȳ

dt
= −bȳ, ȳ(0) = ε,

so ȳ(t) = ε exp(−bt) (t ≥ 0). Therefore, ỹ(τ̃ε) ≥ ȳ(τ̃ε) > 0, which is a contradiction
as ỹ(τ̃ε) = 0. Hence, a < 0, as required. Note that this argument also shows that a < 0
when ε = 0 and R0 > 1, since ỹ′(0) = γ (R0 − 1).

Finally, it follows using (7.35) and (7.36) that

B =
[
1 −dε

0 0

]
,

where dε is given by (3.19). Theorem 3.3 follows from (7.34), since T (n) D= n −
S̃(n)(τ̃ (n)) and x̃(τ̃ε) = 1 − γ τ̃ε .

We turn now to the proof of Theorem 3.5, so R0 > 1 and the initial number of
infectives mn = m for all sufficiently large n. Consider the (un-time-transformed)
epidemic process {(S(n)(t), I (n)(t))} and let tn = inf{t : S(n)(t) ≤ n − log n}, where
tn = ∞ if S(n)(t) > n − log n for all t ≥ 0. Thus tn is the time when the cumulative
number of infectives reaches at least log n, so tn < ∞ if and only if T (n) ≥ log n.
Suppose T (n) ≥ log n. We run the un-time-transformed process up until time tn and
then make the random time-scale transformation described above, with the clock
starting again at 0. By the strong Markov property, the latter process is a realisation
of {(S̃(n)(t), Ĩ (n)(t))} with (S̃(n)(0), Ĩ (n)(0)) = (S(n)(tn), I (n)(tn)). Note that 0 ≤
n− S̃(n)(0) ≤ 1+log n and 0 ≤ Ĩ (n)(0) ≤ 1+log n, so conditional upon T (n) ≥ log n,

limn→∞
√

n
[
n−1(S̃(n)(0), Ĩ (n)(0)) − (1, 0))

]
= (1, 0), and Theorem 7.3 holds with

ε = 0 and ε0 = 0.
Recall that τ̃ (n) = inf{t > 0 : Ĩ (n)(t) = 0} and τ̃0 = inf{t > 0 : ỹ(t) = 0}, where

ỹ(t) is the solution of (3.18) with ε = 0. Further τ̃0 ∈ (0,∞) as R0 > 1. Theorem 7.3
implies that there exists t0 > τ̃0 such that

sup
0≤t≤t0

∣
∣∣n−1(S̃(n)(t), Ĩ (n)(t)) − (x̃(t), ỹ(t))

∣
∣∣

p−→ 0 as n → ∞, (7.37)
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where (x̃(t), ỹ(t)) is givenby the solutionof (3.15)with initial condition (x̃(0), ỹ(0)) =
(1, 0). It follows that min(τ̃ (n), |τ̃ (n) − τ̃0|) p−→ 0 as n → ∞. By Theorem 3.4(b),
there exists δ > 0 such that

lim
n→∞P(T (n) ≥ nδ|T (n) ≥ log n) = 1. (7.38)

Let t1 be the unique solution in (0,∞) of x̃(t1) = 1− δ. Then (7.37) and (7.38) imply
that P(τ̃ (n) ≤ δ

2 |T (n) ≥ log n) → 0 as n → ∞, so

lim
n→∞P

(
T (n) = n − S̃(n)(τ̃

(n)
1 )|T (n) ≥ log n

)
= 1, (7.39)

where τ̃
(n)
1 = inf{t > t1

2 : Ĩ (n)(t) = 0}.
Now τ̃0 = inf{t > t1

2 : ỹ(t) = 0}, since ỹ(t) > 0 for all t ∈ (0, t1
2 ]. The above proof

is easily modified to show that, conditional upon T (n) ≥ log n, (7.34) holds with ε = 0
and τ̃ (n) replaced by τ̃

(n)
1 . Theorem 3.5 follows using (7.39), since x̃(τ̃0) = 1 − γ τ̃0.

8 Concluding comments

We have presented a new class of SIR epidemic models in which disease is transmitted
viamixing groups, and not just pairwise interactions, togetherwith a branching process
approximation for the early phase of an epidemic with few initial infectives and CLTs
for both the temporal behaviour of epidemics with many initial infectives and the final
outcome of a major outbreak. The standard homogeneously mixing SIR epidemic
model is a special case of the mixing group model whenmixing groups are necessarily
of size 2. If R0 and the recovery rate γ are held fixed then the initial exponential growth
rate r of ourmodel is the sameas that of the standardSIRmodel but both the probability,
1 − z, and final size, τ , of a major outbreak are smaller. We have proved a number
of comparison results for the mixing group model. In broad terms, if R0 and γ are
held fixed, then both 1 − z and τ decrease with mixing group size and the duration
of an epidemic increases with mixing group size. In the extreme case of very large
mixing groups, the final size τ of a major outbreak can be only fractionally larger than
1− R−1

0 . (Note that τ is necessarily greater than 1− R−1
0 since otherwise the epidemic

would never become subcritical.)
One limitation of the analysis and results presented is that they assume that the

infectious period follows an exponential distribution. The approximating branching
process B described in Sect. 3.3 can be extended in the obvious fashion to the case
when the infectious period follows an arbitrary but specified distribution. The CLTs
presented in this paper can be extended via the method of stages to incorporate an
Erlang, and more generally a phase-type, infectious period distribution. An alternative
approach is to use the LLN and functional CLT for age and density dependent popula-
tion processes in Wang (1975, 1977), though details are likely to be complicated. The
phase-type approach is generally easier to implement as it requires just the methodol-
ogy of density dependent population processes, which is well developed. However, if
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the infectious period distribution does not belong to the class of phase-type distribu-
tions then that approach is only approximate since one needs to approximate the actual
infectious period distribution by one which is phase-type. Although any distribution
can be approximated arbitrarily closely by a phase-type distribution, the size of the
phase space can become infeasible for numerical purposes.

It would be interesting to study other models for transmission within mixing events.
One possibility is tomake aGreenwood-type assumption: viz. if there are c individuals
at a mixing event then, provided there is at least one infective at the event, each suscep-
tible present becomes infected independently with probability πc. The approximating
branching process B is unchanged, as it assumes that all mixing events contain at
most one infective. However, the CLTs do change. Omitting the details, the formulae
for gc(y) and hc(x, y) (see (3.3) and (3.8)) become

gc(y) = cπc

[
1 − (1 − y)c−1

]

and

hc(x, y) = cxπc

[
1 − (1 − y)c−1

]
+ c(c − 1)x2π2

c [1 − (1 − y)]c−2 .

Corresponding theorems to Theorems 3.1, 3.2, 3.3 and 3.5 then follow with some
changes to their sufficient conditions. Analogous comparison results to Theorems 4.1
and 4.2 hold. Further, if all mixing events are of size c and πc = min(ζ/c, 1), where
ζ ∈ (0,∞), then if R0 > 1 and γ are held fixed and c → ∞, the probability of a
minor outbreak given one initial infective, z, tends to a limit that is strictly less than
1, while the size of a major outbreak, τ , tends to 1 − R−1

0 . The limit of τ for the
corresponding model with Reed-Frost type mixing is strictly greater than 1 − R−1

0 .
A few models with non-pairwise transmission are mentioned in the introduction.

Other examples include models incorporating synergystic interactions (eg. Ludlam et
al. 2012), models in which the usual mass-action law of infection, where the overall
force of infection is proportional to the product of the numbers of susceptible (S)
and infective (I ) infective individuals, is replaced by some other function of (S, I )
(eg. O’Neill and Wen 2012 and references therein) and in nonparametric inference,
such as Knock and Kypraios (2014), where no particular form is assumed for the
force of infection. In all of these models new infectives occur one at a time. Billard et
al. (1980) analyse an SI model (i.e. one in with no recovery from infection) in which
infections occur in batches whose sizes are i.i.d. random variables. However, models
in which infection is not driven by pairwise interaction of individuals are relatively
rare.

The model was motivated by non-pharmaceutical intervention policies for Covid-
19 that placed limits on the size of gatherings outside the home and it would be
interesting to use it to explore the effects of such policies. It is straightforward to
analyse, at least numerically, the effects of changes in the distribution of the mixing
group size random variable C on epidemic properties such as R0 and the probabil-
ity and size of a major outbreak. The LLN and functional CLT in Sect. 3.2 can be
extended to allow the distribution of C to be time and/or state dependent, thus permit-
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ting investigation of corresponding control measures. Another feature that is highly
pertinent to Covid-19 spread and control is the role played by households. It would
be worthwhile to examine the effects of extending the households model of Ball et
al. (1997) so that between-household spread is modelled using mixing groups, rather
than by homogeneous mixing. Another promising direction for future work is to intro-
duce heterogeneities, eg. owing to age and/or level of social activity, and study the
corresponding multitype model.
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